Skip to main content
Log in

Use of the enriched stable isotope Cr-50 as a tracer to study the metabolism of chromium (III) in normal and diabetic rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The activable enriched stable isotope Cr-50 compound Cr2O3 was used as a tracer to study the metabolism of chromium(III) [CR(III)] intragastrically administered in normal and diabetic rats. The comparison of absorption, distribution, and excretion in organs and tissues of the two groups do not show much alteration, but some differences exist indeed. The contents of51Cr radioactivity of the diabetic rats appear to be of higher retention than in most studied organisms. The urinary51Cr excretion of diabetics is significantly higher than that of normal rats. Therefore, a conclusion can be drawn that the insulin-dependent rats generally absorb and excrete more chromium (Cr) than the normal rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Schwarz and W. Mertz, Chormium (III) and the glucose tolerance factor,Arch. Biochem. Biophys. 85, 292–295 (1965).

    Article  Google Scholar 

  2. R. O. Brown, S. Fourloines-Lynn, R. E. Cross, and W. D. Heizer, Chromium deficiency after long-term total parenteral nutrition,Dig. Dis. Sci. 31, 661–664 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. H. Freund, S. Atamian, and J. E. Fischer, Chromium deficiency during total parenteral nutrition,J. Am. Med Assoc. 241, 496–498 (1979).

    Article  CAS  Google Scholar 

  4. K. N. Jeejebhoy, R. C. Chur, E. Marliss, G. R. Greenberg, and A. Bruce-Robertson, Chromium deficiency, glucose intolerance and neuropathy reversed by chromium supplementation in a patient receiving long-term total parenteral nutrition,Am. J. Clin. Nutr. 30, 531–538 (1977).

    Google Scholar 

  5. M. J. Uusitupa, L. Mykkanen, O. Sütonen, M. Laakso, H. Sarlund, P. Kolehmainen et al. Chromium supplementation in impaired glucose tolerance of elderly: effects on blood glucose, plasma insulin, C-peptide and lipid levels,Br. J. Nutr. 68, 209–216 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. P. R. Shepherd, C. Elwood, P. D. Buckley, and L. F. Blackwell, Glucose tolerance factor potentiation of insulin action in adipocytes from rats raised in a torula yeast diet cannot be attributed to a deficiency of chromium or glucose tolerance factor activity in the diet,Biol. Trace Element Res. 32, 109–113 (1992).

    CAS  Google Scholar 

  7. B. W. Morris, T. A. Gray, and S. Macneil, Glucose-dependent uptake of chromium in human and rat insulin-sensitive tissues,Clin. Sci. 84, 477–482 (1993).

    PubMed  CAS  Google Scholar 

  8. H. J. Dowling, E. G. Offenbacher, and F. X. PI-Sunyer, Absorption of inorganic, trivalent chromium from the vascularly perfused rat small intestine,J. Nutr. 119, 1138–1145 (1989).

    PubMed  CAS  Google Scholar 

  9. W. Y. Feng, W. J. Ding, Q. F. Qian, and Z. F. Chai, Study the metabolism of chromium in rats by51Cr tracer technique,Nuclear Tech. (in Chinese, accepted) (1998).

  10. R. A. Anderson and M. M. Polansky, Dietary and metabolite effects on trivalent chromium retention and distribution in rats,Biol. Trace Element Res. 50, 97–108, (1995).

    CAS  Google Scholar 

  11. R. J. Doisy, Metabolism of51chromium in human subjects—normal, elderly and diabetic subjects, inNewer Tracer Elements in Nutrition, W. Mertz, and W. Cornatzer, eds., Dekker, New York, pp. 155–168 (1971).

    Google Scholar 

  12. T. H. Lim, T. Sargent III, and N. Kusubov, Kinetics of tracer element chromium (III) in the human body,Am. J. Physiol. 244, R445-R454 (1983).

    PubMed  CAS  Google Scholar 

  13. S. Wallach and R. Verch, Radiochromium distrition distribution in aged rats,J. Am. Coll. Nutr. 5, 291 (1986).

    PubMed  CAS  Google Scholar 

  14. Z. N. Song, The epidemiology of diabetes in China, inApplied Diabetes, G. Y. Giang, ed., The People’s Medical Publishing House, Beijing, pp. 1–22 (1996).

    Google Scholar 

  15. F. E. Rossetto and E. Nieboer, The interaction of metal ions with synthetic DNA: induction of conformational and structural transitions,J. Inorg. Biochem. 54, 167–186 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. T. S. Elizabeth, Effects of chromium in DNA replication in vitro,Environ. Health Perspect 102 (Suppl. 3), 41–44 (1994).

    Google Scholar 

  17. N. E. Craft and M. L. Failla, Zinc, iron and copper absorption in the stretpozotocin diabetic rat,Am. J. Physiol. 244, E122-E128 (1983).

    PubMed  CAS  Google Scholar 

  18. I. Raz, J. H. Adler and E. Havivi, Altered tissue content of trace metals in diabetic hyperinsulinaemic sand rats (psammomys obesus),Diabetologia 31, 329–333 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. M. L. Failla and C. Y. R. Gardll, Influence of spontaneous diabetes on tissue status of zinc, copper and managenese in the BB Wistar rats,Proc. Soc. Exp. Biol. Med. 180, 317–322 (1985).

    PubMed  CAS  Google Scholar 

  20. A. L. Lau and M. L. Failla, Urinary excretion of zinc, copper, and iron in the streptozotocin-diabetic rat,J. Nutr. 114, 224–233 (1984).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, W., Ding, W., Qian, Q. et al. Use of the enriched stable isotope Cr-50 as a tracer to study the metabolism of chromium (III) in normal and diabetic rats. Biol Trace Elem Res 63, 129–138 (1998). https://doi.org/10.1007/BF02778872

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02778872

Index Entries

Navigation