Skip to main content
Log in

CDP840

A novel inhibitor of PDE-4

  • Feature Head
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We present the in vitro characterization of a novel phosphodiesterase type 4 inhibitor, CDP840 (R-[+]-4-[2-{3-cyclopentyloxy-4-methoxyphenyl}-2-phenylethyl]pyridine), which has shown efficacy in a phase II allergen challenge study in asthmatics without adverse effects. CDP840 potently inhibits PDE-4 isoenzymes (IC50 2–30 nM) without any effect on PDE-1, 2, 3, 5, and 7 (IC50>100 μM). It exhibited no significant selectivity in inhibiting human recombinant isoenzymes PDE-4A, B, C or D and was equally active against the isoenzymes lacking UCR1 (PDE-4B2 and PDE-4D2). In contrast to rolipram, CDP840 acted as a simple competitive inhibitor of all PDE-4 isoenzymes. Studies with rolipram indicated a heterogeneity within all the preparations of PDE-4 isoenzymes, indicative of rolipram inhibiting the catalytic activity of PDE-4 with both a low or high affinity. These observations were confirmed by the use of a PDE-4A variant, PDE-4A330–886, which rolipram inhibited with low affinity (IC50=1022 nM). CDP840 in contrast inhibited this PDE-4A variant with similar potency (IC50=3.9 nM), which was in good agreement with theK d of 4.8 nM obtained from [3H]-CDP840 binding studies. Both CDP840 and rolipram inhibited the high-affinity binding of [3H]-rolipram binding to PDE-4A, B, C and D with similarK d app (7–19 nM and 3–5 nM, respectively). Thus, the activity of CDP840 at the [3H]-rolipram binding site was in agreement with the inhibitor’s activity at the catalytic site. However, rolipram was ∼100-fold more potent than CDP840 at inhibiting the binding of [3H]-rolipram to mouse brain in vivo. These data clearly demonstrate that CDP840 is a potent selective inhibitor of all PDE-4 isoenzymes. In contrast to rolipram, CDP840 was well-tolerated in humans. This difference, however, cannot at present be attributed to either isoenzyme selectivity or lack of activity in vitro at the high-affinity rolipram binding site (Sr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PDE:

phosphodiesterase

cAMP:

adenosine 3′−5′-cyclic monophosphate

BSA:

bovine serum albumin

Sr:

high-affinity rolipram binding site

Sc:

low-affinity rolipram binding site

AEBSF:

4-(-2-aminoethyl) benzenesulfonyl fluoride

EDTA:

ethylenediaminetetraacetic acid

References

  1. Palfreyman, M. N. and Souness, J. E. (1996) Phosphodiesterase type IV inhibitors.Prog. Med. Chem. 33, 1–52.

    Article  PubMed  CAS  Google Scholar 

  2. Torphy, T. J., Livi, G., and Christensen, S. (1993) Novel phosphodiesterase inhibitors for the therapy of asthma.Drug News Perspect. 6, 203–214.

    Google Scholar 

  3. Torphy, T. J. and Undem, B. J. (1991) Phosphodiesterase inhibitors new opportunities for the treatment of asthma.Thorax. 46, 512–523.

    Article  PubMed  CAS  Google Scholar 

  4. Saletu, B. (1992) EEG mapping and psychopharmacology with denbufylline in SDAT and MID.Biol. Psychiatry 32, 668–681.

    Article  PubMed  CAS  Google Scholar 

  5. Brunne, T., Engelstatter, R., Steinijans, V. W., and Kunkel, G. (1992) Bronchodilator effects of inhaled Zardaverine, a phosphodiesterase 3 and 4 inhibitor in patients with asthma.Eur. Respir. J. 5, 982–985.

    Google Scholar 

  6. Hebenstrieb, G. H. (1989) Rolipram in major depressive disorders results of a double blind comparative study with imipramine.Pharmacol. Psychiatr. 22, 156–160.

    Google Scholar 

  7. Swinnen, J. V., Joseph D. R., and Conti, M. (1989) Molecular cloning of rat homologues of theDrosophilia melanogaster dunce cAMP phosphodiesterase.Proc. Natl. Acad. Sci. USA 86, 5325–5329.

    Article  PubMed  CAS  Google Scholar 

  8. Bolger, G., Michaeli, T., Martins, T., St John, T., Steiner, B., Rodgers, L., Riggs, M., and Ferguson, K. (1993) A family of human phosphodiesterases homologous to thedunce learning and memory gene product ofDrosophila melanogaster are potential targets for anti-depressant drugs.Mol. Cell. Biol. 13, 6558–6571.

    PubMed  CAS  Google Scholar 

  9. Hughes, B., Owens, R. J., Perry, M. J., Warrellow, G., and Allen, R. (1997) PDE 4 inhibitors: the use of molecular cloning in the design and development of novel drugs.Drug Disc. Today 2, 89–101.

    Article  CAS  Google Scholar 

  10. Huston, E., Pooley, L., Julien, P., McPhee, I., Sullivan, M., Bolger, G., and Houslay, M. D. (1996) The human cyclic AMP-specific phosphodiesterase PDE 46 (HSPDE4A4B) expressed in transfected COS7 cells occurs as both particulate and cytosolic species that exhibit distinct kinetics of inhibition by the anti-depressant rolipram.J. Biol. Chem. 271, 31,334–31,344.

    CAS  Google Scholar 

  11. O'Connell, J. C., McCallum, J. F., McPhee, I., Wakefield, J., Houslay, E. S., Wishart, W., Bolger, G., Frames, M., and Houslay, M. D. (1996) The SH3 domain of SRC tyrosyl protein kinase interacts with the N-terminal splice region of the PDE 4A cAMP-specific phosphodiesterase RPDE-6 (RNPDE 45).Biochem. J. 318, 255–262.

    PubMed  Google Scholar 

  12. Alvarez, R., Sette, C., Yang, D., Eglen, R. M., Wilhelm, R., Shelton, E. R., and Conti, M. (1995) Activation and selective inhibition of a cyclic AMP-specific phosphodiesterase, PDE 4D3.Mol. Pharm. 48, 616–622.

    CAS  Google Scholar 

  13. Sette, C. and Conti, M. (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation.J. Biol. Chem. 271, 16,526–16,534.

    CAS  Google Scholar 

  14. Torphy, T. J., Stadel, J. M., Burman, M., Cieslinski, L. B., McLaughlin, M. M., White, J. R., and Livi, G. P. (1992) Co-expression of human cAMP-specific phosphodiesterase activity and high affinity rolipram binding in yeast.J. Biol. Chem. 267, 1798–1804.

    PubMed  CAS  Google Scholar 

  15. McLaughlin, M., Cieslinski, L., Burman, M., Torphy, T., and Livi, G. P. (1993) A low-Km rolipram-sensitive, cAMP-specific phosphodiesterase from human brain.J. Biol. Chem. 268, 6470–6476.

    PubMed  CAS  Google Scholar 

  16. Schneider, H. H., Schmiechen, R., Brezinski, M., and Seidler, J. (1986) Stereospecific binding of the anti-depressant rolipram to brain protein structures.Eur. J. Pharm. 127, 105–115.

    Article  CAS  Google Scholar 

  17. Souness, J. E., Griffin, M., Maslen, C., Ebsworth, K., Scott, L. C., Pollock, K., Palfreyman, M. N., and Karlsson, J. A. (1996) Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF-alpha generation from human monocytes by interacting with a low-affinity phosphodiesterase 4 conformer.Br. J. Pharm. 118, 649–658.

    CAS  Google Scholar 

  18. Barnette, M. S., Bartus, J. O. L., Burman, M., Christensen, S. B., Cieslinski, L. B., Esser, K. M., Prabhakar, V. S., Rush, J. A., and Torphy, T. J. (1996) Association of the anti-inflammatory activity of phosphodiesterase 4 (PDE 4) inhibitors with either inhibition of PDE 4 catalytic activity or competition for [H-3] rolipram binding.Bioch. Pharm. 51, 949–956.

    Article  CAS  Google Scholar 

  19. Cohan, V. L., Showell, H. J., Fisher, D. A., Pazoles, C. J., Watson, J. W., Turner, C. R., and Cheng, J. B. (1996) In vitro pharmacology of the novel phosphodiesterase type 4 inhibitor CP-80633.J. Pharm. Exp. Ther. 278, 1356–1361.

    CAS  Google Scholar 

  20. Harbinson, P. L., MacLeod, D., Hawksworth, R., O'Toole, S., Sullivan, P. J., Heath, P., Kilfeather, S., Page, C. P., Costello, J., Holgate, S. T., and Lee, T. H. (1997) The effect of a novel orally active selective PDE4 isoenzyme inhibitor (CDP840) on allergen-induced responses in asthmatic subjects.Eur. Respir. J. 10, 1008–1014.

    Article  PubMed  CAS  Google Scholar 

  21. Owens, R. J., Catterall, C., Batty, D., Jappy, J., Russell, A., Smith, B. J., O'Connell, J., and Perry, M. J. (1997) Human phosphodiesterase 4A; characterization of full-length and truncated enzymes expressed in COS cells.Biochem. J., in press.

  22. Owens, R. J., Lumb, S., Rees-Milton, K., Russell, A., Baldock, D., Lang, V., Crabbe, T., Ballesterso, M., and Perry, M. J. (1997) Molecular cloning and expression of a human phosphodiesterase 4C.Cell. Signalling, in press.

  23. Bolger, G. (1994) Molecular biology of the cAMP-specific cyclic nucleotide phosphodiesterases: a diverse family of regulatory enzymes.Cell. Signalling,6, 851–859.

    Article  PubMed  CAS  Google Scholar 

  24. Summers, M. D. and Smith, G. E. (1987) A manual of methods for baculovirus vectors and insect culture procedures.Texas Agricultural Experiment Station Bulletin no. 1555.

  25. Hughes, B., Howat, D., Lisle, H., Holbrook, M., James, T., Gozzard, N., Blease, K., Hughes, P., Kingaby, R., Warrellow, G., Alexander, R., Head, J., Boyd, E., Eaton, M., Perry, M., Wales, M., Smith, B., Owens, R., Catterall, C., Lumb, S., Russell, A., Allen, R., Merriman, M., Bloxham, D., and Higgs, G. (1996) The inhibition of antigen-induced eosinophilia and bronchoconstriction by CDP840, a novel stereo-selective inhibitor of phosphodiesterase type 4.Br. J. Pharmacol. 118(5), 1183–1191.

    PubMed  CAS  Google Scholar 

  26. Smith, B. J., Wales, M. R., Jappy, J. W. G., and Perry, M. J. (1993) A phosphodiesterase assay using Alumina Microcolumns.Anal. Biochem. 214, 335–357.

    Article  Google Scholar 

  27. Kroegel, C., Giembycz, M. A., and Barnes, P. J. (1990) Characterisation of eosinophil cell activation by peptides.J. of Immunol. 145, 2581–2587.

    CAS  Google Scholar 

  28. Schmiechen, R., Schneider, H. H., and Wachtel, H. (1990) Close correlation between behavioural response and binding in vivo for inhibitors of the rolipram-sensitive phosphodiesterase.Psychopharmacol. 102, 17–20.

    Article  CAS  Google Scholar 

  29. Dixon, M. (1953) The determination of enzyme inhibitor constants.Biochem. J. 55, 170–175.

    PubMed  CAS  Google Scholar 

  30. Souness, J. E., Maslen, C., Webber, S., Foster, M., Raeburn, D., Palfreyman, M. N., Ashton, M. J., and Karlsson, J. A. (1995) Suppression of eosinophil function by RP73401, a potent and selective inhibitor of cyclic AMP-specific phosphodiesterase.Br. J. Pharmacol. 115, 39–46.

    PubMed  CAS  Google Scholar 

  31. Kovala, T., Sanwal, B. D., and Ball, E. C. (1997) Recombinant expression of a Type IV cAMP-Specific Phosphodiesterase: Characterisation and Structure-function Studies of Deletion Mutants.Biochemistry 36, 2968–2976.

    Article  PubMed  CAS  Google Scholar 

  32. Wilson, M., Sullivan, M., Brown, N., and Houslay, M. D. (1994) Purification, characterization and analysis of rolipram inhibition of a human type-IVA cyclic AMP-specific phosphodiesterase expressed in yeast.Biochem. J. 304, 407–415.

    PubMed  CAS  Google Scholar 

  33. Holbrook, M., Gozzard, N., James, T., Higgs, G., and Hughes, B. (1996) Inhibition of bronchospasm and ozone-induced airway hyperresponsiveness in the guinea-pig by CDP840, a novel phosphodiesterase type 4 inhibitor.Br. J. Pharmacol. 118(5), 1192–1200.

    PubMed  CAS  Google Scholar 

  34. Gozzard, N., Elhashim, A., Herd, C. M., Blake, S. M., Holbrook, M., Hughes, B., Higgs, G. A., and Page, C. P. (1996) Effect of the glucocorticosteroid budesonide and a novel phosphodiesterase type 4 inhibitor, CDP840, on antigen-induced airway responses in neonatally immunised rabbits.Br. J. Pharmacol. 118(5), 1201–1208.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Perry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, M.J., O’Connell, J., Walker, C. et al. CDP840. Cell Biochem Biophys 29, 113–132 (1998). https://doi.org/10.1007/BF02737831

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737831

Index Entries

Navigation