Skip to main content
Log in

A purkinje cell protein-2 intronic thyroid hormone response element binds developmentally regulated thyroid hormone receptor-nuclear protein complexes

  • Original Articles
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Two thyroid hormone response elements (TREs), designated A1 TRE (−295/−268) and B1 TRE (+207/+227), have been identified within the Purkinje cell-expressed Pcp-2 gene. Previous studies have characterized the A1 TRE (Zou et al., 1994). This article analyzes the structural and functional characteristics of the intronic B1 TRE. The B1 sequence contains four overlapping TRE half-sites. The 3′ DR4 motif, consisting of the second and forth half-sites, is responsible for the T3 induction observed with the B1 sequence. Gel-shift analysis reveals developmentally regulated complexes that are abundant in the fetus and at birth and then fall precipitously in the neonate bind to B1. The observed time-course of these complexes varies inversely with the rise in Pcp-2 expression, thus raising the possibility that the complexes may represent inhibitory factors. Supershift analysis indicates that endogenous TRα1 is present in the fetal nuclear protein complexes that bind to B1. Competition analysis also indicates the second B1 TRE half-site is important in binding the TRα1-TRAP complexes. These studies suggest that the B1 sequence may bind potential TRα1-TRAP repressor complexes in the fetus, whereas in the neonate, these TRE sites may be involved in the activation of Pcp-2 by binding other TR-TRAP-activating complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T3:

3,5,3′-l-triiodothyronine (thyroid hormone)

TR(s):

thyroid hormone receptor(s)

TRE(s):

thyroid hormone response element(s)

RXR:

9-cis retinoic acid receptor

Pcp-2:

Purkinje cell protein-2

DR4:

direct repeat 4

TRAP(s):

thyroid hormone receptor auxiliary protein(s)

References

  • Baniahmad A., Tsai S. Y., O’Malley B. W., and Tsai M.-J. (1992) Kindred S thyroid hormone receptor is an active and constitutive silencer and a repressor for thyroid and retinoic responses.Proc. Natl. Acad. Sci. USA 89, 10,633–10,637.

    Article  CAS  Google Scholar 

  • Baniahmad A., Ha I., Reinberg D., Tsai S. Y., Tsai M.-J., and O’Malley B. W. (1993) Interaction of human thyroid hormone receptor β with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone.Proc. Natl. Acad. Sci. USA 90, 8832–8836.

    Article  PubMed  CAS  Google Scholar 

  • Baniahmad A., Leng X., Burris T. P., Tsai S. Y., Tsai M.-J., and O’Malley B. W. (1995) The tau 4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing.Mol. Cell. Biol. 15, 76–86.

    PubMed  CAS  Google Scholar 

  • Beebe J. S., Darling D. S., and Chin W. W. (1991) 3,5,3′-triiodothyronine receptor auxiliary protein (TRAP) enhances receptor binding by interactions within the thyroid hormone response element.Mol. Endocrinol. 5, 85–93.

    PubMed  CAS  Google Scholar 

  • Berrodin T. J., Marks M. S., Ozato K., Linney E., and Lazar M. A. (1992) Heterodimerization among thyroid hormone receptor, retinoic acid receptor, retinoid X receptor, chicken ovalbumin upstream promoter transcription factor, and an endogenous liver protein.Mol. Endocrinol. 6, 1468–1478.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bradley D. J., Towle H. C., and Young W. S. (1992) Spatial and temporal expression of α- and β-thyroid hormone receptor mRNAs, including the β2 subtype, in the developing mammalian nervous system.J. Neurosci. 12, 2288–2302.

    PubMed  CAS  Google Scholar 

  • Brent G., Dunn M., Harney J., Gulick T., Larsen P. R., and Moore D. (1989) Thyroid hormone aporeceptor represses T3-inducible promoters and blocks activation of the retinoic acid receptor.New Biol. 1, 329–336.

    PubMed  CAS  Google Scholar 

  • Brent G. A., Moore D. D., and Larsen P. R. (1991a) Thyroid hormone regulation of gene expression.Annu. Rev. Physiol. 53, 17–35.

    Article  PubMed  CAS  Google Scholar 

  • Brent G. A., Williams G. R., Harney J. W., Forman B. M., Samuels H. H., Moore D. D., and Larsen P. R. (1991b) Effects of varying the position of thyroid hormone response elements within the rat growth hormone promoter: implications for positive and negative regulation by 3,5,3′-triiodothyronine.Mol. Endocrinol. 5, 542–548.

    Article  PubMed  CAS  Google Scholar 

  • Burnside J., Darling D. S., and Chin W. W. (1990) A nuclear factor that enhances binding of thyroid hormone receptors to thyroid hormone response elements.J. Biol. Chem. 265, 2500–2504.

    PubMed  CAS  Google Scholar 

  • Carlson D., Strait K., Schwartz H., and Oppenheimer J. (1994) Immunofluorescent localization of thyroid hormone receptor isoforms in glial cells of rat brain.Endocrinology 135, 1831–1836.

    Article  PubMed  CAS  Google Scholar 

  • Damm K., Thompson C. C., and Evans R. M. (1989) Protein encoded by v-erb A functions as a thyroid-hormone receptor antagonist.Nature 340, 242–244.

    Article  Google Scholar 

  • Darling D. S., Beebe J. S., Burnside J., Winslow E. R., and Chin W. W. (1991) 3,5,3′-triiodothyronine (T3) receptor-auxiliary protein (TRAP) binds DNA and forms heterodimers with the T3 receptor.Mol. Endocrinol. 5, 73–84.

    PubMed  CAS  Google Scholar 

  • Dignam J. D. (1990) Preparation of extracts from higher eukaryotes, inMethods in Enzymology (Deutscher M. P., ed.), Academic, San Diego, pp. 194–203.

    Google Scholar 

  • Farsetti A., Robbins J., and Nikodem V. (1990) Molecular basis of thyroid hormone regulation of myelin basic protein gene expression in rodent brain.J. Biol. Chem. 266, 23,226–23,232.

    Google Scholar 

  • Fondell J. D., Roy A. L., and Roeder R. G. (1993) Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for active repression.Genes Dev. 7, 1400–1410.

    Article  PubMed  CAS  Google Scholar 

  • Forrest D., Hallböök F., Persson H., and Vennström B. (1991) Distinct functions for thyroid hormone receptors α and β in brain development indicated by differential expression of receptor genes.EMBO J. 10, 269–275.

    PubMed  CAS  Google Scholar 

  • Glass C. K., Franco R., Weinberger A. V. R., Evans R. M., and Rosenfeld M. G. (1987) A c-erbA binding site in rat growth hormone gene mediates trans-activation by thyroid hormone.Nature 329, 738–741.

    Article  PubMed  CAS  Google Scholar 

  • Hall B. L., Smit-McBride Z., and Privalsky M. L. (1993) Reconstitution of retinoid X receptor function and combinatorial regulation of other nuclear hormone receptors in the yeastSaccharomyces cerevisiae.Proc. Natl. Acad. Sci. USA 90, 6929–6933.

    Article  PubMed  CAS  Google Scholar 

  • Koenig R. J., Brent G. A., Warne R. L., Larsen P. R., and Moore D. D. (1987) Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone.Proc. Natl. Acad. Sci. USA 84, 5670–5674.

    Article  PubMed  CAS  Google Scholar 

  • Lazar M. A., Berrodin T. J., and Harding H. P. (1991) Differential DNA binding by monomeric, homodimeric, and potentially heterodimeric forms of the thyroid hormone receptor.Mol. Cell. Biol. 11, 5005–5015.

    PubMed  CAS  Google Scholar 

  • Lee I. J., Driggers P. H., Medin J. A., Nikodem V. M., and Ozato K. (1994) Recombinant thyroid hormone receptor and retinoid X receptor stimulate ligand-dependent transcription in vitro.Proc. Natl. Acad. Sci. USA 91, 1647–1651.

    Article  PubMed  CAS  Google Scholar 

  • Legrand J. (1967) Analyse de l’action morphogenetique des hormones thyroidiennes sur le cervelet du jeune rat.Arch. Anat. Microscop. Morphol. Exp. 56, 205–244.

    CAS  Google Scholar 

  • Legrand J. (1986) Thyroid hormone effects on growth and development, inThyroid Hormone Metabolism (Hennemann G., ed.), Marcel Dekker, New York, pp, 503–534.

    Google Scholar 

  • Miyamoto T., Suzuki S., and DeGroot L. J. (1994) Differential binding and activation of thyroid hormone response elements by TR alpha 1 and RXR alpha-trap heterodimers.Mol. Cell. Endocrinol. 102, 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Murray M. B. and Towle H. C. (1989) Identification of nuclear factors that enhance binding of the thyroid hormone receptor to a thyroid hormone response element.Mol. Endocrinol. 3, 1434–1442.

    PubMed  CAS  Google Scholar 

  • Nordeen S. K. (1988) Luciferase reporter gene vectors for analysis of promoters and enhancers.Biotechniques 6, 454–467.

    PubMed  CAS  Google Scholar 

  • Nordquist D. T., Kozak C. A., and Orr H. T. (1988) cDNA cloning and characterization of three genes uniquely expressed in cerebellum by Purkinje cells.J. Neurosci. 8, 223–226.

    Google Scholar 

  • Norman M. F., Lavin T. N., Baxter J. D., and West B. L. (1989) The rat growth hormone gene contains multiple thyroid response elements.J. Biol. Chem. 264, 12,063–12,073.

    CAS  Google Scholar 

  • Oppenheimer J. H. and Samuels H. H. (1983)Molecular Basis of Thyroid Hormone Action. Academic, New York.

    Google Scholar 

  • Rosenthal N. (1987) Identification of regulatory elements of cloned genes with functional assays, inMethods in Enzymology (Berger S. L. and Kimmel A. R., eds.), Academic, San Diego, pp. 717,718.

    Google Scholar 

  • Ruiz de Ona C., Morreale de Escobar M., Calvo R., Escobar del Rey F., and Obregon M. J. (1991) Thyroid hormones and 5′-deiodinase in the rat fetus late in gestation: effects of maternal hypothyroidism.Endocrinology 128, 422–432.

    Article  PubMed  CAS  Google Scholar 

  • Samuels H. H., Forman B. M., Horowitz Z. D., and Ye Z. S. (1988) Regulation of gene expression by thyroid hormone.J. Clin. Invest. 81, 957–967.

    Article  PubMed  CAS  Google Scholar 

  • Sap J., de Magistris L., Stunnenberg H., and Vennstrom B. (1990) A major thyroid hormone response element in the third intron of the rat growth hormone gene.EMBO J. 9, 887–896.

    PubMed  CAS  Google Scholar 

  • Schwartz H. L. (1983) Effect of thyroid hormone in growth and development, inMolecular Basis of Thyroid Hormone Action (Oppenheimer J. H. and Samuels H. H., eds.), Academic, New York, pp. 413–444.

    Google Scholar 

  • Schwartz H. L., Strait K. A., Oppenheimer J. H., and Ling N. C. (1992) Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine binding capacity.J. Biol. Chem. 267, 11,794–11,799.

    CAS  Google Scholar 

  • Shulemovich K., Dimaculangan D. D., Katz D., and Lazar M. A. (1995) DNA bending by thyroid hormone receptor: influence of half-site spacing and RXR.Nucleic Acids Res. 23, 811–818.

    Article  PubMed  CAS  Google Scholar 

  • Strait K., Schwartz H., Perez-Castillo A., and Oppenheimer J. (1990) Relationship of c-erbA mRNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats.J. Biol. Chem. 265, 10,514–10,521.

    CAS  Google Scholar 

  • Strait K. A., Schwartz H. L., Seybold V. S., Ling N. C., and Oppenheimer J. H. (1991) Immunofluorescent localization of thyroid hormone receptor protein β1 and variant α2 in selected tissues: cerebellar Purkinje cells as a model for β1 receptor mediated developmental effects of thyroid hormone in brain.Proc. Natl. Acad. Sci. USA 88, 3887–3891.

    Article  PubMed  CAS  Google Scholar 

  • Strait K. A., Zou L., and Oppenheimer J. H. (1992) β1 isoform-specific regulation of a triiodothyronine-induced gene during cerebellar development.Mol. Endocrinol. 6, 1874–1880.

    Article  PubMed  CAS  Google Scholar 

  • Sugawara A., Yen P. M., Darling D. S., and Chin W. W. (1993) Characterization and tissue expression of multiple triiodothyronine receptor-auxiliary proteins and their relationship to retinoid X receptors.Endocrinology 133, 965–971.

    Article  PubMed  CAS  Google Scholar 

  • Thompson C. C. and Evans R. M. (1989) Trans-activation by thyroid hormone receptors. Functional parallels with steroid hormone receptors.Proc. Natl. Acad. Sci. USA 86, 3494–3498.

    Article  PubMed  CAS  Google Scholar 

  • Thompson K. L., Santon J. B., Shephard L. B., Walton G. M., and Gill G. N. (1992) A nuclear protein is required for thyroid hormone receptor binding to an inhibitory half-site in the epidermal growth factor receptor promoter.Mol. Endocrinol. 6, 627–635.

    Article  PubMed  CAS  Google Scholar 

  • Williams G. R. and Brent G. A. (1995) Thyroid hormone response elements, inMolecular Endocrinology: Basic Concepts and Clinical Correlations (Weintraub B. D., ed.), Raven, New York, pp. 217–239.

    Google Scholar 

  • Yen P. M., Spanjaard R. A., Sugawara A., Darling D. S., and Nguyed V. P. (1993) Orientation and spacing of half-sites differentially affect T3-receptor (TR) monomer, homodimer, and heterodimer binding to thyroid hormone response elements (TREs).Endocrine J. 1, 461–466.

    Google Scholar 

  • Yen P. M., Ikeda M., Brubaker J. H., Forgione M., Sugawara A., and Chin W. W. (1994) Roles of v-erbA homodimers and heterodimers in mediating dominant negative activity by v-erbA.J. Biol. Chem. 269, 903–909.

    PubMed  CAS  Google Scholar 

  • Yen P. M., Wilcox E. C., Hayashi Y., Refetoff S., and Chin W. W. (1995) Studies on the repression of basal transcription (silencing) by artificial and natural human thyroid hormone receptor-beta mutants.Endocrinology 136, 2845–2851.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X. K., Wills K. N., Graupner G., Tzukerman M., Hermann T., and Pfahl M. (1991) Ligand-binding domain of thyroid hormone receptors modulates DNA binding and determines their bifunctional roles.New Biol. 3, 169–181.

    PubMed  CAS  Google Scholar 

  • Zou L., Hagen S. G., Strait K. A., and Oppenheimer J. H. (1994) Identification of thyroid hormone response elements in rodent Pcp-2, a developmentally regulated gene of cerebellar Purkinje cells.J. Biol. Chem. 269, 13,346–13,352.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagen, S.G., Larson, R.J., Strait, K.A. et al. A purkinje cell protein-2 intronic thyroid hormone response element binds developmentally regulated thyroid hormone receptor-nuclear protein complexes. J Mol Neurosci 7, 245–255 (1996). https://doi.org/10.1007/BF02737062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737062

Index Entries

Navigation