Skip to main content
Log in

Neurotrophins and theirtrk receptors in cultured cells of the glial lineage and in white matter of the central nervous system

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Previous studies have analyzed the expression of different members of the neurotrophin family and theirtrk receptors in glial cultures composed mainly or exclusively of type-1 astrocytes, whereas only partial data have been published on other cultured glial types. In this article we compare the mRNA levels for neurotrophins (NGF, BDNF, NT-3, NT-4) and their high-affinity receptors (trkA,trkB,trkC) in cultures enriched in specific glial types, such as microglia, type-1 astroglia, and cells of the O/2A lineage (type-2 astroglia and oligodendroglia). Relatively high levels of NGF mRNA (comparable to those observed in adult rat cerebral cortex) are present in all types of cultured glial cells, except for a low level of expression in cultures enriched in microglial cells. In contrast, BDNF mRNA is undetectable in all cultures examined. NT-3 and NT-4 mRNA molecules, at a level equal to that observed in adult rat cerebral cortex, are easily detected in type-1 astrocyte cultures, whereas their hybridization signals are undetectable in cells of the O/2A lineage and in microglial cultures. The analysis of neurotrophin receptor mRNAs confirms the absence oftrkA mRNA, the presence of relatively high levels oftrkB mRNA (70–100% of cerebral cortex values), and low levels oftrkC mRNA (10–18% of cerebral cortex values) in both cultured astroglial and oligodendroglial cells. Only very low levels oftrkB andtrkC mRNAs are observed in microglial cultures. Although cultured glial cells express mainly mRNAs encoding for the truncated form oftrkB andtrkC, a low level of mRNA encoding for the full-length catalytic form of these receptors is detected by the sensitive ribonuclease protection assay. However, NT-3 and NT-4 increasezif/268 expression in oligodendroglial cultures, but not in type-1 astroglial cultures. The presence of these transcripts has been also examined in white matter regions that are devoid of neuronal cell bodies and enriched in glial cells (optic nerve and the corpus callosum). Both corpus callosum and optic nerve show the presence of NGF, NT-3, and NT-4 mRNA, whereas BDNF mRNA level is very low or undetectable;trkA mRNA is absent, although both the truncated and full-lengthtrkB andtrkC mRNA are detected. In conclusion, in vivo (central nervous system white matter) and in vitro (glial cultures) results support the hypothesis that cells of the glial lineage can be both a source of neurotrophins and a cellular target for their actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aloisi F., Agresti C., and Levi G. (1988) Establishment, characterization, and evolution of cultures enriched in type-2 astrocytes.J. Neurosci. Res. 21, 188–198.

    Article  PubMed  CAS  Google Scholar 

  • Althaus H. H., Kloppner S., Schmidt-Schultz T., and Schwartz P. (1992) Nerve growth factor induces proliferation and enhances fiber regeneration in oligodendrocytes isolated from adult pig brain.Neurosci. Lett. 135, 219–223.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong R. C., Harvath L., and Dubois-Dalcq M. E. (1990) Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules.J. Neurosci. Res. 27, 400–407.

    Article  PubMed  CAS  Google Scholar 

  • Avola R., Condorelli D. F., Surrentino S., Turpeenoja L., Costa A., and Giuffrida Stella A. M. (1988) Effect of epidermal growth factor and insulin on DNA, RNA and cytoskeletal proteins labeling in primary rat astroglial cell cultures.J. Neurosci. Res. 19, 230–238.

    Article  PubMed  CAS  Google Scholar 

  • Barres B. A., Schmid R., Sendnter M., and Raff M. C. (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival.Development 118, 283–295.

    PubMed  CAS  Google Scholar 

  • Barres B. A., Raff M. C., Gaese F., Bartke I., Dechant G., and Barde Y. A. (1994) A crucial role for neurotrophin-3 in oligodendrocyte development.Nature 367, 371–375.

    Article  PubMed  CAS  Google Scholar 

  • Beck K. D., Lamballe F., Klein R., Barbacid M., Schauwecker P. E., McNeill T. H., Finch C. E., Hefti F., and Day J. R. (1993) Induction of noncatalytic TrkB neurotrophin receptors during axonal sprouting in the adult hippocampus.J. Neurosci. 13, 4001–4014.

    PubMed  CAS  Google Scholar 

  • Behar T., McMorris F. A., Novotny E. A., Barker J. L., and Dubois-Dalq M. (1988) Growth and differentiation proprieties of O-2A progenitors from rat cerebral hemispheres.J. Neurosci. Res. 21, 168–180.

    Article  PubMed  CAS  Google Scholar 

  • Carman-Krzan M., Vigé X., and Wise B. C. (1991) Regulation by interleukin-1 of nerve growth factor secretion and nerve growth factor mRNA expression in rat primary astroglial cultures.J. Neurochem. 56, 636–643.

    Article  PubMed  CAS  Google Scholar 

  • Ceccatelli S., Ernfors P., Villar M. J., Persson H., and Hokfelt T. (1991) Expanded distribution of mRNA for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the rat brain after colchicine treatment.Proc. Natl. Acad. Sci. USA 88, 10,352–10,356.

    Article  CAS  Google Scholar 

  • Chao M. V. (1992) Neurotrophin receptors: a window into neuronal differentiation.Neuron 9, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Christy B. A., Lau L. F., and Nathans D. (1988) A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with “zinc finger” sequences.Proc. Natl. Acad. Sci. USA 85, 7857–7861.

    Article  PubMed  CAS  Google Scholar 

  • Condorelli D. F., Dell’Albani P., Amico C., Kaczmarek L., Nicoletti F., Lukasiuk K., and Giuffrida-Stella A. M. (1993) Induction of primary response genes by excitatory amino acid receptor agonists in primary astroglial cultures.J. Neurochem. 60, 877–885.

    Article  PubMed  CAS  Google Scholar 

  • Condorelli D. F., Dell’Albani P., Mudò G., Timmusk T., and Belluardo N. (1994) Expression of neurotrophins and their receptors in primary astroglial cultures: induction by cAMP-elevating agents.J. Neurochem. 63, 509–516.

    Article  PubMed  CAS  Google Scholar 

  • Elkabes S., Schaar D. G., Dreyfus C. F., and Black I. B. (1995) Developmental regulation of neurotrophin-3 and TrkC splice variants in optic nerve glia in vivo.Neuroscience 66, 879–889.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P., Ibanez C. F., Ebendal T., Olson L., and Persson H. (1990) Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain.Proc. Natl. Acad. Sci. USA 87, 5454–5458.

    Article  PubMed  CAS  Google Scholar 

  • Espinosa de los Monteros A., Zhang M. S., Gordon M., and Aymie M., and de Vellis J. (1992) Transplantation of cultured premyelinating oligodendrocytes into normal and myelin-deficient rat brain.Dev. Neurosci. 14, 98–104.

    Google Scholar 

  • Frei K., Bodmer S., Schwerdel C., and Fontana A. (1986) Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages.J. Immunol. 137, 3521–3527.

    PubMed  CAS  Google Scholar 

  • Frisen J., Verge V. M., Fried K., Risling M., Persson H., Trotter J., Hokfelt T., and Lindholm D. (1993) Characterization of glial trkB receptors: differential response to injury in the central and peripheral nervous systems.Proc. Natl. Acad. Sci. USA 90, 4971–4975.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa S., Furukawa Y., Satoyoshi E., and Hayashi K. (1987) Synthesis/secretion of nerve growth factor is associated with cell growth in cultured mouse astroglial cells.Biochem. Biophys. Res. Commun. 142, 395–402.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales D., Les Dees W., Hiney J. K., Ojeda S. R., and Saneto R. P. (1990) Expression of β-nerve growth factor in cultured cells derived from the hypothalamus and cerebral cortex.Brain Res. 511, 249–258.

    Article  Google Scholar 

  • Houlgatte R., Mallet M., Brachet P., and Prochiantz A. (1989) Secretion of nerve growth factor in cultures of glial cells and neurons derived from different regions of the mouse brain.J. Neurosci. Res. 24, 143–152.

    Article  PubMed  CAS  Google Scholar 

  • Hutton L. A., deVellis J., and Perez Polo J. R. (1992) Expression of p75NGFR TrkA, and TrkB and mRNA in rat C6 glioma and type I astrocyte cultures.J. Neurosci. Res. 32, 375–383.

    Article  PubMed  CAS  Google Scholar 

  • Ingraham C. A. and McCarthy K. D. (1989) Plasticity of process-bearing glial cell cultures from neonatal rat cerebral cortical tissue.J. Neurosci. 9, 63–69.

    PubMed  CAS  Google Scholar 

  • Juurlink B. H. J. and Hertz L. (1991) Establishment of highly enriched type-2 astrocytes cultures and quantitative determination of intense glutamine synthetase activity in these cells.J. Neurosci. Res. 30, 531–539.

    Article  PubMed  CAS  Google Scholar 

  • Klein R., Conway D., Parada L. F., and Barbacid M. (1990) The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain.Cell 61, 647–656.

    Article  PubMed  CAS  Google Scholar 

  • Klein R., Lamballe F., Bryant S., and Barbacid M. (1992) The trkB tyrosine kinase is a receptor for neurotrophin-4.Neuron 8, 947–956.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S., Huber J., Pena L. A., Perez Polo J. R., Werrbach-Perez K., and de Vellis J. (1990) Characterization of functional nerve growth factor-receptors in a CNS glial cell line: monoclonal antibody 217c recognizes the nerve growth factor-receptor on C6 glioma cells.J. Neurosci. Res. 27, 408–417.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S., Pena L. A., and de Vellis J. (1993) CNS glial cells express neurotrophin receptors whose levels are regulated by NGF.Brain Res. Mol. Brain Res. 17, 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Lamballe F., Tapley P., and Barbacid M. (1993) trkC encodes multiple neurotrophin-3 receptors with distinct biological properties and substrate specificities.EMBO J. 12, 3083–3094.

    PubMed  CAS  Google Scholar 

  • Levi G. and Ciotti M. T. (1986) Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and “neuron-like” gamma-aminobutyric acid transport.Proc. Natl. Acad. Sci. USA 83, 1504–1508.

    Article  PubMed  CAS  Google Scholar 

  • Lu B., Yokoyama M., Dreyfus C. F., and Black I. B. (1991) NGF gene expression in actively growing brain glia.J. Neurosci. 11, 318–326.

    PubMed  CAS  Google Scholar 

  • Martin-Zanca D., Oskam R., Mitra G., Copeland T., and Barbacid M. (1989) Molecular and biochemical characterization of the humantrk proto-oncogene.Mol. Cell. Biol. 9, 24–33.

    PubMed  CAS  Google Scholar 

  • McCarthy K. D. and de Vellis J. (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue.J. Cell Biol. 85, 890–902.

    Article  PubMed  CAS  Google Scholar 

  • Merlio J. P., Ernfors P., Jaber M., and Persson H. (1992) Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system.Neuroscience 51, 513–532.

    Article  PubMed  CAS  Google Scholar 

  • Middlemas D. S., Lindberg R. A., and Hunter T. (1991) trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors.Mol. Cell. Biol. 11, 143–153.

    PubMed  CAS  Google Scholar 

  • Raff M. C., Abney E. R., Cohen J., Lindsay R., and Noble M. (1983a) Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics.J. Neurosci. 3, 1289–1300.

    PubMed  CAS  Google Scholar 

  • Raff M. C., Miller R. H., and Noble M. (1983b) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending upon culture medium.Nature 303, 390–396.

    Article  PubMed  CAS  Google Scholar 

  • Raff M. C. (1989) Glial cell diversification in the rat optic nerve.Science 243, 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  • Rudge J. S., Alderson R. F., Pasnikowski E. M., McClain J., Ip N. Y., and Lindsay R. M. (1992) Expression of ciliary neurotrophic factor and the neurotrophins—nerve growth factor, brain derived neurotrophic factor and neurotrophin 3—in cultured rat hippocampal astrocytes.Eur. J. Neurosci. 4, 459–471.

    Article  PubMed  Google Scholar 

  • Rudge J. S., Li Y., Pasnikowski E. M., Mattsson K., Yancopoulos G. D., Pan L., Wiegand S. J., Lindsay R. M., and Ip N. Y. (1994) Neurotrophic factor receptors and their signal transduction capabilities in rat astrocytes.Eur. J. Neurosci. 6, 693–705.

    Article  PubMed  CAS  Google Scholar 

  • Saneto R. P. and deVellis J. (1985) Characterization of cultured rat oligodentrocytes proliferating in a serum free, chemically defined medium.Proc. Natl. Acad. Sci. USA 82, 3509–3513.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H. (1991) The changing scene of neurotrophic factors.Trends Neurosci. 14, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Timmusk T., Belluardo N., Metsis M., and Persson H. (1993) Widespread and developmentally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues.Eur. J. Neurosci. 5, 605–613.

    Article  PubMed  CAS  Google Scholar 

  • Trotter J. and Schachner M. (1989) Cells positive for the O4 surface antigen isolated by cell sorting are able to differentiate into astrocytes or oligodentrocytes-enriched cultures from rat brain.Dev. Brain Res. 46, 115–122.

    Article  CAS  Google Scholar 

  • Tsoulfas P., Soppet D., Escandon E., Tessarollo L., Mendoza Ramirez J. L., Rosenthal A., Nikolics K., and Parada L. F. (1993) The rat trkC locus encodes multiple neurogenic receptors that exhibit differential response to neurotrophin-3 in PC12 cells.Neuron 10, 975–990.

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela D. M., Maisonpierre P. C., Glass D. J., Rojas E., Nunez L., Kong Y., Gies D. R., Stitt T. N., Ip N. Y., and Yancopoulos G. D. (1993) Alternative forms of rat TrkC with different functional capabilities.Neuron 10, 963–974.

    Article  PubMed  CAS  Google Scholar 

  • Zafra F., Lindholm D., Castren E., Hartikka J., and Thoenen H. (1992) Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes.J. Neurosci. 12, 4793–4799.

    PubMed  CAS  Google Scholar 

  • Zhou X. F., Parada L. F., Soppet D., and Rush R. A. (1993) Distribution of trkB tyrosine kinase immunoreactivity in the rat central nervous system.Brain Res. 622, 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Zhou X. F. and Rush R. A. (1994) Localization of neurotrophin-3-like immunoreactivity in the rat central nervous system.Brain Res. 643, 162–172.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Condorelli, D.F., Salin, T., Dell’Albani, P. et al. Neurotrophins and theirtrk receptors in cultured cells of the glial lineage and in white matter of the central nervous system. J Mol Neurosci 6, 237–248 (1995). https://doi.org/10.1007/BF02736783

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736783

Index Entries

Navigation