Skip to main content
Log in

Glutathione redox cycle is an important defense system of endothelial cells against chronic hyperoxia

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Exposure of cultured pulmonary artery endothelial cells to 95% O2 resulted in the following sequence of events: decrease in [3H]thymidine incorporation after 24 h; increase of intracellular glutathione (GSH) and loss of cellular protein after 48 h; increase of spontaneous and decrease of provoked prostacyclin formation as well as increased release of cellular LDH after 72 h. This oxygen toxicity model was used to study the following 2 questions. (1) What is the relative importance of the GSH redox cycle compared to catalase as antioxidative defense against hyperoxia? Endothelial cells were grown in selenium-depleted medium to inhibit glutathione peroxidase activity. Endothelial GSH biosynthesis was inhibited by buthionine sulfoximine. Catalase activity was reduced by aminotriazole. Endothelial cells with an impaired GSH redox cycle were easily killed by hyperoxia within 24 h, while inhibition of catalase did not enhance the susceptibility of endothelial cells to hyperoxia. (2) Can endothelial GSH content be increased by exogenous sulfhydryl reagents and does this results in an increase of endothelial cells’ resistance to hyperoxia? Exogenous GSH, N-acetylcysteine, cysteine, and L-2-oxothiazolidine-4-carboxylate (L-2-oxo) increased intracellular GSH. All sulfhydryl reagents (with the exception of L-2-oxo) protected endothelial cells from hyperoxia. Concentrations of exogenous GSH and N-acetylcysteine that did not increase intracellular GSH reduced hyperoxia-induced endothelial cell injury. Thus the capacity of the GSH redox cycle rather than intracellular GSH levels or catalase determines endothelial cells’ resistance to hyperoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–383

    PubMed  CAS  Google Scholar 

  2. Bannai S, Tateishi N (1986) Role of membrane transport in metabolism and function of glutathione in mammals. J Membrane Biol 89:1–8

    Article  CAS  Google Scholar 

  3. Block ER, Patel JM, Sheridan NP (1985) Effect of oxygen and endotoxin on lactate dehydrogenase release, 5-hydroxytryptamine uptake, and antioxidant enzyme activities in endothelial cells. J Cell Physiol 122:240–248

    Article  PubMed  CAS  Google Scholar 

  4. Cantin AM, North SL, Hubbard RC, Crystal RG (1987) Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol 63:152–157

    PubMed  CAS  Google Scholar 

  5. Crapo JD, Tierney DF (1974) Superoxide dismutase and pulmonary oxygen toxicity. Am J Physiol 226:1401–1407

    PubMed  CAS  Google Scholar 

  6. Crapo JD, Barry BE, Foscue HA, Shelburne J (1980) Structural and biochemical changes in rat lungs occuring during exposure to lethal and adaptive doses of oxygen. Am Rev Respir Dis 122:123–143

    PubMed  CAS  Google Scholar 

  7. Deneke SM, Steiger V, Fanburg BL (1987) Effect of hyperoxia on glutathione levels and glutamic acid uptake in endothelial cells. J Appl Physiol 63:1966–1977

    PubMed  CAS  Google Scholar 

  8. Dobrina A, Patriarca P (1986) Neutrophil-endothelial cell interaction: evidence for and mechanisms of the self-protection of microvascular endothelial cells from hydrogen peroxide-induced oxidative stress. J Clin Invest 78:462–471

    PubMed  CAS  Google Scholar 

  9. Dunn OJ, Clark VA (1974) Applied statistics: analysis of variance and regression. Wiley, New York

    Google Scholar 

  10. Flohé L (1979) Glutathione peroxidase: fact and fiction. In: Oxygen free radicals and tissue damage. Ciba Foundation Symp. 65 (new series). Excerpta Medica, Amsterdam, pp 95–122

    Google Scholar 

  11. Forman HJ, Rotman EI, Fisher AB (1983) Roles of selenium and sulfur-containing amino acids in protection against oxygen toxicity. Lab Invest 49:148–153

    PubMed  CAS  Google Scholar 

  12. Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426

    PubMed  CAS  Google Scholar 

  13. Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    PubMed  CAS  Google Scholar 

  14. Harlan JM, Levine JD, Callahan KS, Harker LA (1984) Glutathione redox cycle protects cultured endothelial cells against lysis by extracellularly generated hydrogen peroxide. J Clin Invest 73:706–713

    PubMed  CAS  Google Scholar 

  15. Housset B, Ody C, Rubin B, Elemer G, Junod AF (1983) Oxygen toxicity in cultured aortic endothelium: selenium-induced partial protective effect. J Appl Physiol 55:343–352

    PubMed  CAS  Google Scholar 

  16. Jackson RM, Chandler DB, Fulmer JD (1986) Production of arachidonic acid metabolites by endothelial cells in hyperoxia. J Appl Physiol 61:584–591

    PubMed  CAS  Google Scholar 

  17. Jamieson D, Chance B, Cadenas E, Boveris A (1986) The relation of free radical production to hyperoxia. Ann Rev Physiol 48:703–719

    Article  CAS  Google Scholar 

  18. Jamieson DD, Kerr DR, Unsworth I (1987) Interaction of N-acetylcysteine and bleomycin on hyperbaric oxygen-induced lung damage in mice. Lung 165:239–247

    Article  PubMed  CAS  Google Scholar 

  19. Jenkinson SG, Spence TH, Lawrence RA, Hill KE, Duncan CA, Johnson KH (1987) Rat lung glutathione release: response to oxidative stress and selenium deficiency. J Appl Physiol 62:55–60

    Article  PubMed  CAS  Google Scholar 

  20. Jones DP, Elköw L, Thor H, Orrenius S (1981) Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch Biochem Biophys 210:505–516

    Article  PubMed  CAS  Google Scholar 

  21. Junod AF, Petersen H, Jornot L (1987) Thymidine kinase, thymidylate synthase, and endothelial cell growth under hyperoxia. J Appl Physiol 62:10–14

    PubMed  CAS  Google Scholar 

  22. Kovacs EJ, Kelley J (1985) Secretion of macrophage-derived growth factor during acute lung injury induced by bleomycin. J Leukocyte Biol 37:1–14

    PubMed  CAS  Google Scholar 

  23. Lash LH, Hagen TM, Jones DP (1986) Exogenous glutathione protects intestinal epithelial cells from oxidative injury. Proc Natl Acad Sci USA 83:4641–4645

    Article  PubMed  CAS  Google Scholar 

  24. Margoliash E, Novogrodsky A (1958) A study of the inhibition of catalase by 3-amino-1,2,4-triazole. Biochem J 68:468–475

    PubMed  CAS  Google Scholar 

  25. McKeehan WI, Hamilton WG, Ham RG (1976) Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc Natl Acad Sci USA 73:2023–2027

    Article  PubMed  CAS  Google Scholar 

  26. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  27. Moldeus P, Cotgreave IA, Berggren M (1986) Lung protection by a thiol-containing antioxidant: N-acetylcysteine. Respiration 50 (suppl):31–42

    PubMed  CAS  Google Scholar 

  28. Patterson CE, Rhoades RA (1988) Protective role of sulfhydryl reagents in oxidant lung injury. Exp Lung Res 14:1005–1019

    PubMed  CAS  Google Scholar 

  29. Phillips PG, Tsan MF (1988) Hyperoxia causes increased albumin permeability of cultured endothelial monolayers. J Appl Physiol 64:1196–1202

    Article  PubMed  CAS  Google Scholar 

  30. Suttorp N, Simon LM (1982) Lung cell oxidant injury: Enhancement of polymorphonuclear leukocyte-mediated cytotoxicity in lung cells exposed to sustained in vitro hyperoxia. J Clin Invest 70:342–350

    Article  PubMed  CAS  Google Scholar 

  31. Suttorp N, Simon LM (1983) Decreased bactericidal function and impaired respiratory burst in lung macrophages after sustained in vitro hyperoxia. Am Rev Respir Dis 128:486–490

    PubMed  CAS  Google Scholar 

  32. Suttorp N, Simon LM (1986) Importance of the glutathione redox cycle for the resistance of lung epithelial cells against a polymorphonuclear leukocyte-mediated oxidant attack. Biochem Pharmacol 35:2268–2270

    Article  PubMed  CAS  Google Scholar 

  33. Suttorp BN, Toepfer W, Roka L (1986) Antioxidant defense mechanisms in endothelial cells: glutathione redox cycle versus catalase. Am J Physiol 251:C671-C680

    PubMed  CAS  Google Scholar 

  34. Suttorp N, Seeger W, Zinsky S, Bhakdi S (1987) Complement complex C5b-8-induced PGI2 formation in cultured endothelial cells. Am J Physiol 253:C13-C21

    PubMed  CAS  Google Scholar 

  35. Suttorp N, Hessz T, Seeger W, Wilke A, Koob R, Lutz F, Drenckhahn D (1988) Bacterial exotoxins and endothelial permeability for water and albumin in vitro. Am J Physiol 255:C368-C376

    PubMed  CAS  Google Scholar 

  36. Stadtman TC (1980) Selenium-dependent enzymes. Annu Rev Biochem 49:93–110

    Article  PubMed  CAS  Google Scholar 

  37. Thor H, Moldeus P, Orrenius S (1979) Metabolic activation and hepatotoxicity: effect of cysteine, N-acetylcysteine, and methionine on glutathione biosynthesis and bromobenzene toxicity in isolated rat hepatocytes. Arch Biochem Biophys 192:405–413

    Article  PubMed  CAS  Google Scholar 

  38. Tsan MF, Danis EH, DelVeccio PJ, Rosano CL (1985) Enhancement of intracellular glutathione protects endothelial cells against oxidant damage. Biochem Biophys Res Commun 127:270–276

    Article  PubMed  CAS  Google Scholar 

  39. Uhlig S, Wendel A (1990) Glutathione enhancement in various mouse organs and protection by glutathione isopropyl ester against liver injury. Biochem Pharmacol 39:1877–1881

    Article  PubMed  CAS  Google Scholar 

  40. Vercellotti GM, Dobson M, Schorer AE, Moldow CF (1988) Endothelial cell heterogeneity: antioxidant profiles determine vulnerability to oxidant injury. Proc Soc Exp Biol Med 187:181–189

    PubMed  CAS  Google Scholar 

  41. William JM, Boettcher JM, Meister A (1982) Intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis. Proc Natl Acad Sci USA 78:936–939

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suttorp, N., Kästle, S. & Neuhof, H. Glutathione redox cycle is an important defense system of endothelial cells against chronic hyperoxia. Lung 169, 203–214 (1991). https://doi.org/10.1007/BF02714155

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02714155

Key words

Navigation