Skip to main content
Log in

A comparative phylogenetic analysis of full-lengthmariner elements isolated from the Indian tasar silkmoth,Antheraea mylitta (Lepidoptera: saturniidae)

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Mariner like elements (MLEs) are widely distributed type II transposons with an open reading frame (ORF) for transposase. We studied comparative phylogenetic evolution and inverted terminal repeat (ITR) conservation of MLEs from Indian saturniid silkmoth,Antheraea mylitta with other full length MLEs submitted in the database. Full length elements fromA. mylitta were inactive with multiple mutations. Many conserved amino acid blocks were identified after aligning transposase sequences. Mariner signature sequence, DD(34)D was almost invariable although a few new class of elements had different signatures.A. mylitta MLEs(Anmmar) get phylogenetically classified under cecropia subfamily and cluster closely with the elements from other Bombycoidea superfamily members implying vertical transmission from a common ancestor. ITR analysis showed a conserved sequence of AGGT(2-8N)ATAAGT for forward repeat and AGGT(2-8N)ATGAAAT for reverse repeat. These results and additional work may help us to understand the dynamics of MLE distribution inA. mylitta and construction of appropriate vectors for mariner mediated transgenics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ITRs:

Inverted terminal repeats

MLE:

mariner like elements

ORF:

open reading frame

References

  • Brunet F, Godin F, Bazin C and Capy P 1999 Phylogenetic analysis of Mos1-like transposable elements in theDrosophilidae;J. Mol. Evol. 49 760–768

    Article  PubMed  CAS  Google Scholar 

  • Capy P, Koga A, David J R and Hartl D L 1992 Sequence analysis of active mariner elements in natural population ofDrosophila simulans;Genetics 130 499–506

    PubMed  CAS  Google Scholar 

  • Doak T G, Doerder F P, Jahn C L and Herrick G 1994 A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif;Proc. Natl. Acad. Sci. USA 91 942–946

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C and Wessler S R 2002 Mariner-like transposons are widespread and diverse in flowering plant;Proc. Natl. Acad. Sci. USA 99 280–285

    Article  PubMed  CAS  Google Scholar 

  • Hartl D L1989 Transposable elementmariner inDrosophila species; inMobile DNA (eds) D E Berg and M W Howe (Washington DC: American Society for Microbiology) pp 531–536

    Google Scholar 

  • Hartl D L, Lohe A R and Lozovskaya E R 1997a Modern thoughts on an ancyent marinere: function, evolution, regulation;Annu. Rev. Genet. 31 337–358

    Article  PubMed  CAS  Google Scholar 

  • Hartl D L, Lohe A R and Lozovskaya E R 1997b Regulation of the transposable elementmariner;Genetica 100 177–184

    Article  PubMed  CAS  Google Scholar 

  • Hartl D L, Lozovskaya E R, Nurminsky D I and Lohe A R 1997c What restricts the activity of mariner like transposable elements;Trends Genet. 13 197–201

    Article  PubMed  CAS  Google Scholar 

  • Haymer D S and Marsh J L 1986 Germ line and somatic instability of awhite mutation inDrosophila mauritiana due to a transposable genetic element;Dev. Genet. 6 281–291

    Article  PubMed  CAS  Google Scholar 

  • Jacobson J W, Medhora M M and Hartl D L 1986 Molecular structure of somatically unstable transposable element inDrosophila;Proc. Natl. Acad. Sci. USA 83 8684–8688

    Article  PubMed  CAS  Google Scholar 

  • Jarvik T and Lark K G 1998 Characterization of Soymar1, a mariner element in soybean;Genetics 149 1569–1574

    PubMed  CAS  Google Scholar 

  • Lampe D J, Akerley B J, Rubin E J, Mekalanos J J and Robertson H M 1999 Hyperactive transposase mutants of the Himar1 mariner transposon;Proc. Natl. Acad. Sci. USA 96 11428–11433

    Article  PubMed  CAS  Google Scholar 

  • Lampe D J, Churchill M and Robertson H M 1996 A purified mariner transposase is sufficient to mediate transpositionin vitro;EMBO J. 15 5470–5479

    PubMed  CAS  Google Scholar 

  • Lampe D J, Walden K K and Robertson H M 2001 Loss of Transposase-DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome;Mol. Biol. Evol. 18 954–961

    PubMed  CAS  Google Scholar 

  • Lohe A R, De Aguiar D and Hartl D L 1997 Mutations in the mariner transposase: the D,D(35)E consensus sequence is nonfunctional;Proc. Natl. Acad. Sci. USA 94 1293–1297

    Article  PubMed  CAS  Google Scholar 

  • Lohe A R, Moriyama K, Lidholm D A and Hartl D L 1995 Horizontal transmission, vertical inactivation and stochastic loss of mariner-like transposable elements;Mol. Biol. Evol. 12 62–72

    PubMed  CAS  Google Scholar 

  • Lohe A R, Sullivan D T and Hartl D L 1996 Subunit interaction in the mariner transposase;Genetics 144 1087–1095

    PubMed  CAS  Google Scholar 

  • Maruyama K, Schoor K D and Hartl D L 1991 Identification of nucleotide substitutions necessary for trans-activation ofmariner transposable elements inDrosophila: analysis of naturally occurring elements;Genetics 128 777–784

    PubMed  CAS  Google Scholar 

  • Nakajima Y, Hashido K, Shiino T, Hayashi T, Tsuchida K, Nagamine M and Maekawa H 1998 Isolation of a marinerlike sequence containing a complete open reading frame for transposase fromAttacus atlas and its phylogenetic relationships within the Ditrysia of Lepidoptera;J. Seric. Sci. Jpn. 67 271–278

    CAS  Google Scholar 

  • Plasterk R H, Izsvak Z and Ivics Z 1999 Resident aliens: the Tc1/mariner superfamily of transposable elements;Trends Genet. 15 326–332

    Article  PubMed  CAS  Google Scholar 

  • Prasad M D, Nurminsky D L and Nagaraju J 2002 Characterization and molecular phylogenetic analysis of mariner elements from wild and domesticated species of silkmoths;Mol. Phyl. Evol. 25 210–217

    Article  Google Scholar 

  • Robertson H M 1993 The mariner transposable element is widespread in insects;Nature (London) 362 241–245

    Article  CAS  Google Scholar 

  • Robertson H M and MacLeod E G1995 Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods;Insect. Mol. Biol. 2 125–139

    Google Scholar 

  • Robertson H M and Asplund M L 1996 Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth,Bombyx mori;Insect Biochem. Mol. Biol. 26 945–954

    Article  PubMed  CAS  Google Scholar 

  • Schneider T D and Stephens R M 1990 Sequence logos: a new way to display consensus sequences;Nucleic Acids Res. 18 6097–6100

    Article  PubMed  CAS  Google Scholar 

  • Shao H and Tu Z 2001 Expanding the diversity of theIS630Tc1-mariner superfamily: Discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons;Genetics 159 1103–1115

    PubMed  CAS  Google Scholar 

  • Swofford D L 2002PAUP Phylogenetic Analysis Using Parsimony, version 4. Sinauer Associates, Sutherland, Massachusetts, USA

    Google Scholar 

  • Thompson J D, Higgins D G and Gibson T J 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice;Nucleic Acids Res. 22 4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Swevers L and Iatrou K 2000 Mariner (Mos1) transposase and genomic integration of foreign gene sequences inBombyx mori cells;Insect Mol. Biol. 9 145–155

    Article  PubMed  CAS  Google Scholar 

  • Yoshiyama M, Tu Z, Kainoh Y, Honda H, Shono T and Kimura K 2001 Possible horizontal transfer of a transposable element from host to parasitoid;Mol. Biol. Evol. 18 1952–1958

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nagaraju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, M.D., Nagaraju, J. A comparative phylogenetic analysis of full-lengthmariner elements isolated from the Indian tasar silkmoth,Antheraea mylitta (Lepidoptera: saturniidae). J Biosci 28, 443–453 (2003). https://doi.org/10.1007/BF02705119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705119

Keywords

Navigation