Skip to main content
Log in

Chemical waves and fibrillating hearts: Discovery by computation

  • Perspectives
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Bar M and Eiswirth M 1993 Turbulence due to Spiral Break-up in a Continuous Excitable Medium;Phys. Rev. E 48 1635–1637

    Article  Google Scholar 

  • Barkley D 1992 Linear Stability Analysis of Rotating Spiral Waves in Excitable Media;Phys. Lett. 68 2090–2093

    Article  CAS  Google Scholar 

  • Barkley D 1994 Euclidean Symmetry and Dynamics of Rotating Spiral Waves;Phys. Rev. Lett. 72 164–16

    Article  CAS  Google Scholar 

  • Barkley D 1995 Spiral Meandering; inChemical waves and patterns (eds) R Kapral and K Showalter (Dordrecht: Kluwer) pp 163–190

    Chapter  Google Scholar 

  • Barkley D, Kness M and Tuckerman L S 1990 Spiral Wave Dynamics in a Simple Model of Excitable Media: Transition from Simple to Compound Rotation;Phys. Rev. A. 42 2489–2492

    Article  CAS  Google Scholar 

  • Beaumont J, Davidenko N, Davidenko J M and Jalife J 1998 Spiral Waves in Two-dimensional Models of Ventricular Muscle: Formation of a Stationary Core;Biophys. J. 75 1–14

    Article  CAS  Google Scholar 

  • Biktashev V N and Holden A V 1998 Deterministic Brownian Motion in the Hypermeander of Spiral Waves;Physica D 116 342–354

    Article  CAS  Google Scholar 

  • Boissonade J, Dulos E and De Kepper P 1995 Turing Patterns: From Myth to Reality; inChemical waves and patterns (eds) R Kapral and K Showalter (Dordrecht: Kluwer) pp 221–268

    Chapter  Google Scholar 

  • Castets V, Dulos E, Boissonade J and De KepperP 1990 Experimental evidence of a sustained standing Turing-type nonequlibrium chemical pattern;Phys. Rev. Lett. 64 2953–2956

    Article  CAS  Google Scholar 

  • Courtemanche M 1996 Complex Spiral Wave Dynamics in a Spatially Distributed Ionic Model of Cardiac Electrical Activity;Chaos 6 579–600

    Article  Google Scholar 

  • Courtemanche M and Winfree A T 1991 Re-entrant rotating waves in a Beeler-Reuter based model of two-dimensional cardiac conduction;Int. J. Bif. Chaos 1 431–444

    Article  Google Scholar 

  • Diks C 1996On Nonlinear Time Series Analysis: Spatiotemporal Complexity and Noise, Ph.D. dissertation, University of Leiden, The Netherlands

    Google Scholar 

  • Diks C, Hoekstra B and Degoede J 1995 Spiral Wave Dynamics;Chaos Sol. Fract. 5 646–660

    Article  Google Scholar 

  • Fenton F and Karma A 1998a Fiber-Rotation-Induced Vortex Turbulence in Thick Myocardium;Phys. Rev. Lett. 81 481–484

    Article  CAS  Google Scholar 

  • Fenton F and Karma A 1998b Vortex Dynamics in Three-Dimensional Continuous Myocardium with Fiber Rotation: Filament Instability and Rotation;Chaos 8 20–47

    Article  Google Scholar 

  • Fiedler B and Mantel R M 2000 Crossover Collision of Scroll Wave Filaments;Documenta Math. 5 695–731

    Google Scholar 

  • Garfinkel A, Chen P S, Walter D, Karagueuzian H, Kogan B and Weiss J 1996 Quasiperiodicity and Chaos in Cardiac Fibrillation;J. Clin. Invest. 99 305–314

    Article  Google Scholar 

  • Gul’ko F B and Petrov A A 1972 Mechanism of the Formation of Closed Pathways of Conduction in Excitable Media in Russian;Biofizika 17 261–270

    PubMed  Google Scholar 

  • Henze C 1993Stable Organizing Centers, Ph.D. dissertation, University of Arizona, University Microfilms #9333307

  • Henze C, Lugosi E and Winfree A T 1990 Stable Helical Organizing Centers in Excitable Media;Can. J. Phys. 68 683–710

    Article  Google Scholar 

  • Henze C and Winfree A T 1991 A Stable Knotted Singularity in an Excitable Medium;Int. J. Bifurc. Chaos 1 891–922

    Article  Google Scholar 

  • Hodgkin A L and Huxley A F 1952 A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve;J. Physiol. 117 500–544

    Article  CAS  Google Scholar 

  • Jahnke W, Skaggs W and Winfree A T 1989 Chemical vortex dynamics in the Belousov-Zhabotinsky reaction and in the 2-Variable Oregonator model;J. Phys. Chem. 93 740–749

    Article  CAS  Google Scholar 

  • Jahnke W and Winfree A T 1991 A survey of spiral wave behavior in the Oregonator model;Int. J. Bif. Chaos 1 445–466

    Article  Google Scholar 

  • Kapral R and Showalter K 1995Chemical waves and patterns (Dordrecht: Kluwer)

    Book  Google Scholar 

  • Karma A 1990 Meandering Transition in Two-dimensional Excitable Media;Phys. Rev. Lett. 65 2824–2827

    Article  CAS  Google Scholar 

  • Koller M L, Riccio M L and Gilmour R F 1998 Dynamic Restitution of Action Potential Duration during Electrical Alternans and Ventricular Fibrillation;Am. J. Physiol. 275 H1635–1642

    CAS  PubMed  Google Scholar 

  • Kuramoto Y 1984Chemical oscillations, waves and turbulence (Berlin: Springer)

    Book  Google Scholar 

  • Lee K J, Cox E C and Goldstein R E 1996 Competing Patterns of Signaling Activity inDictyostelium discoideum;Phys. Rev. Lett. 76 1174–1177

    Article  CAS  Google Scholar 

  • Lengyel I, Kadar S and Epstein I R 1993 Transient Turing structures in a gradient-free closed system;Science 259 493–495

    Article  CAS  Google Scholar 

  • Lewis T J and Guevara M R 1990 Chaotic Dynamics in an Ionic Model of the Propagated Cardiac Action Potential;J. Theor. Biol. 146 407–432

    Article  CAS  Google Scholar 

  • Lin S F, Roth B J and Wikswo J P 1999 Quatrefoil Reentry in Myocardium: An Optical Imaging Study of the Induction Mechanism;J. Cardiovasc. Electrophysiol. 10 574–586

    Article  CAS  Google Scholar 

  • Lugosi E 1989 Analysis of Meandering in Zykov-Kinetics;Physica D 40 331–337

    Article  Google Scholar 

  • Moore T J 1995Deadly medicine (New York: Simon and Schuster)

    Google Scholar 

  • Nandapurkar P J 1988 Computation of Three Dimensional Waves in Supercomputers; inSimulation of wave processes in excitable media translation V S Zykov (Manchester: University Press)

    Google Scholar 

  • Nandapurkar P J and Winfree A T 1989 Dynamical Stability of Untwisted Scroll Rings in Excitable Media;Physica D 35 277–288

    Article  Google Scholar 

  • Ouyang Q, Flesselles J-M 1996 Transition from Spirals to Defect Turbulence;Nature (London)379 143–146

    Article  CAS  Google Scholar 

  • Ouyang Q and Swinney H L 1991 Transition from a uniform state to hexagonal and striped Turing patterns;Nature (London)352 610–612

    Article  Google Scholar 

  • Panfilov A V and Hogeweg P 1993 Spiral Break-up in a Modified FitzHugh-Nagumo Model;Phys. Lett. A 176 295–299

    Article  Google Scholar 

  • Panfilov and Holden A V 1997Computational biology of the heart (Chichester: John Wiley)

    Google Scholar 

  • Panfilov A V and Winfree A T 1985 Dynamical Simulations of Twisted Scroll Rings in Active Three-Dimensional Media;Physica D 17 323–330

    Article  Google Scholar 

  • Pertsov A M, Aliev R R and Krinsky V I 1990 Three-dimensional Twisted Vortices in an Excitable Chemical Medium;Nature (London)345 419–421

    Article  CAS  Google Scholar 

  • Plesser T and Muller K H 1994 Fourier Analysis of the Complex Motion of a Spiral Tip in Excitable Media;Int. J. Bif. Chaos 5 1071–1084

    Article  Google Scholar 

  • Rashevsky N 1940 An Approach to the Mathematical Biophysics of Biological Self-Regulation and of Cell Polarity;Bull. Mathe. Biophys. 2 15–25

    Article  Google Scholar 

  • Riccio M L, Koller M L and Gilmour R F 1999 Electrical Restitution and Spatiotemporal Organization during Ventricular Fibrillation;Circ. Res. 84 955–963

    Article  CAS  Google Scholar 

  • Rössler O E and Kahlert C 1979 Winfree Meandering in a 2-Dimensional 2-Variable Excitable Medium;Z. Naturforsch. 34 565–570

    Article  Google Scholar 

  • Roth B J 1998 The Pinwheel Experiment Revisited;J. Theor. Biol. 190 389–393

    Article  CAS  Google Scholar 

  • Roth B J and Krassowska W 1998 The Induction of Reentry in Cardiac Tissue. The Missing Link: How Electric Fields Alter Transmembrane Potential;Chaos 8 204–220

    Article  Google Scholar 

  • Sepulveda N G, Roth B J and Wikswo J P 1989 Current Injection into a Two-dimensional Anisotropic Bidomain;Biophys. J. 55 987–999

    Article  CAS  Google Scholar 

  • Shcherbunov A I, Kukushkin N I and Sakson M Y 1973 Reverberator in a System of Interrelated Fibers Described by the Noble Equation in Russian;Biofizika 18 519–525

    CAS  PubMed  Google Scholar 

  • Trayanova N, Scouibine K and Aguel F 1998 The Role of Cardiac Tissue Structure in Defibrillation;Chaos 8 221–233

    Article  Google Scholar 

  • Vigmond E J and Leon L J 2002 Restitution Curves and the Stability of Reentry in Three-dimensional Simulations of Cardiac Tissue;Comput. Visual. Sci. 5 1–11

    Article  Google Scholar 

  • Wikswo J P, Lin S-F and Abbas R A 1995 Virtual Electrodes in Cardiac Tissue: A Common Mechanism for Anodal and Cathodal Stimulation;Biophys. J. 69 2195–2210

    Article  CAS  Google Scholar 

  • Winfree A T 1972 Spiral Waves of Chemical Activity;Science 175 634–636

    Article  CAS  Google Scholar 

  • Winfree A T 1973 Scroll-shaped waves of chemical activity in three dimensions;Science 181 937–939

    Article  CAS  Google Scholar 

  • Winfree A T 1974a Rotating Chemical Reactions;Sci. Am. 230 82–95

    Article  CAS  Google Scholar 

  • Winfree A T 1974b Rotating Solutions to Reaction/Diffusion Equations;S.I.A.M./A.M.S. Proc. 8 13–31 (ed. D Cohen,Am. Math. Soc.: Providence R I)

    Google Scholar 

  • Winfree A T 1977 Spatial and Temporal Organization in the Zhabotinsky Reaction;Adv. Biol. Med. Phys. 16 115–136 (1973Aharon Katchalsky Memorial Symposium eds J H Lawrence, J W Gofman, T L Hayes)

    Article  CAS  Google Scholar 

  • Winfree A T 1980 The geometry of biological time (New York: Springer-Verlag) (and second edition 2001)

    Book  Google Scholar 

  • Winfree A T 1985 Organizing Centers for Chemical Waves in Two and Three Dimensions; inOscillations and traveling waves in chemical systems (eds) R Field and M Burger (New York: Wiley) ch. 12, pp 441–472

    Google Scholar 

  • Winfree A T 1989 Electrical Instability in Cardiac Muscle: Phase Singularities and Rotors;J. Theor. Biol. 138 353–405

    Article  CAS  Google Scholar 

  • Winfree A T 1990 Discrete Spectrum of Rotor Periods in an Excitable Medium;Phys. Lett. A 149 203–206

    Article  Google Scholar 

  • Winfree A T 1991a Varieties of Spiral Wave Behavior in Excitable Media;Chaos 1 303–334

    Article  Google Scholar 

  • Winfree A T 1991b Alternative Stable Rotors in an Excitable Medium;Physica D 49 125–140

    Article  Google Scholar 

  • Winfree A T 1994a Persistent Tangled Vortex Rings in Generic Excitable Media;Nature (London)371 233–236

    Article  CAS  Google Scholar 

  • Winfree A T 1994b Electrical Turbulence in 3-Dimensional Heart Muscle;Science 266 1003–1006

    Article  CAS  Google Scholar 

  • Winfree A T 1995 Persistent Tangles of Vortex Rings in Excitable Media;Physica D 84 126–147

    Article  CAS  Google Scholar 

  • Winfree A T 1997 Rotors, Fibrillation, and Dimensionality; inComputational Biology of the Heart (eds) A V Panfilov and A V Holden (Chichester: John Wiley) Chapter 4, pp 101–135

    Google Scholar 

  • Winfree A T 1998 Evolving Perspectives during Twelve Years of Electrical Turbulence;Chaos 8 1–19

    Article  Google Scholar 

  • Winfree A T 2001 The geometry of biological time (New York: Springer-Verlag) (and first edition 1980)

    Book  Google Scholar 

  • Winfree A T 2002 A Prime Number of Prime Questions about Vortex Dynamics in NonLinear Media; inWhere do we go from here? (eds) J Hoganet al (Bristol: Institute of Physics Press)

    Google Scholar 

  • Winfree A T and Guilford W 1988 The Dynamics of Organizing Centers: Numerical Experiments in Differential Geometry; inBiomathematics and related computational problems 697–716 (ed. L M Riccardi) (Dordrecht: Kluwer Academic Publishers)

    Chapter  Google Scholar 

  • Winfree A T and Strogatz S H 1984 Organizing Centers for Three-Dimensional Chemical Waves;Nature (London)311 611–615

    Article  CAS  Google Scholar 

  • Zaikin A N and Zhabotinsky A M 1970 Concentration wave propagation in two-dimensional liquid-phase self-oscillating systems;Nature (London)225 535–537

    Article  CAS  Google Scholar 

  • Zhang H and Holden A V 1995 Spiral wave breakdown in an excitable medium model of cardiac tissue;Chaos Soliton Fractals 5 661–672

    Article  Google Scholar 

  • Zykov V S 1986 Cycloidal circulation of spiral waves in excitable medium;Biofizika 31 862–865

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winfree, A.T. Chemical waves and fibrillating hearts: Discovery by computation. J. Biosci. 27, 465–473 (2002). https://doi.org/10.1007/BF02705042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705042

Keywords

Navigation