Skip to main content
Log in

Analysis of kaolin by sedimentation field-flow fractionation and electrothermal atomic absorption spectrometry detection

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Electrothermal (graphite furnace) atomic absorption spectrometry (ETAAS), as off-line detector for sedimentation field-flow fractionation (SedFFF) is exploited in clay analysis.

Quantitation limits of coupled SedFFF-ETAAS for the determination of a submicron kaolin sample, considered a representative model of natural water suspended particulate, are theoretically established and experimentally validated with reference to Al and Si determination by ETAAS.

Complete sample recovery for a 4 µg injected kaolin sample was obtained by keeping adsorption in the SedFFF apparatus to a minimum under control. The best experimental conditions, ensuring sample integrity, were low ionic strength (Na2CO3, 10−5 M), pH 8 and a Teflon covered accumulation wall. Several different runs, revealing the various experimental parameters affecting quantitative recovery, are reported and the different physico-chemical processes affecting such recovery are discussed. The advantages and drawbacks of SedFFF-ETAAS coupling compared with inductively coupled plasma-mass spectrometry (ICP-MS) technique are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. D. Caldwell, “Modern Methods of Particle Size Analysis”, H. G. Barth, Ed., Wiley-Interscience, New York, 1984, Chapter 7.

    Google Scholar 

  2. J. C. Giddings, M. N. Myers, M. H. Moon, B. N. Barman, ACS Symp. Ser.472, 198 (1990).

    Article  Google Scholar 

  3. J. J. Kirkland, W. W. Yau, W. A. Doerner, J. W. Grant, Anal. Chem.52, 1944 (1980).

    Article  CAS  Google Scholar 

  4. J. C. Giddings, Science260, 1456 (1993).

    Article  CAS  Google Scholar 

  5. J. C. Giddings, F. J. F. Yang, M. N. Myers, Anal. Chem.46, 1917 (1974).

    Article  CAS  Google Scholar 

  6. J. C. Giddings, G. Karaiskakis, K. D. Caldwell, M. N. Myers, J. Colloid Interface Sci.92, 66 (1983).

    Article  CAS  Google Scholar 

  7. F. J. F. Yang, K. D. Caldwell, J. C. Giddings, J. Colloid Interface Sci.92, 81 (1983).

    Article  CAS  Google Scholar 

  8. J. J. Kirkland, W. W. Yau, Anal. Chem.55, 2165 (1983).

    Article  CAS  Google Scholar 

  9. G. Karaiskakis, K. A. Graff, K. D. Caldwell, J. C. Giddings, Intern. J. Environ. Anal. Chem.12, 1 (1982).

    Article  CAS  Google Scholar 

  10. R. Beckett, G. Nicholson, B. T. Hart, M. Hansen, J. C. Giddings, C. Water. Res.22, 1535 (1988).

    Article  CAS  Google Scholar 

  11. R. Beckett, D. M. Hotchin, B. T. Hart, J. Chromatogr.517, 435(1990).

    Article  CAS  Google Scholar 

  12. P. Reschiglian, L. Pasti, F. Dondi, J. Chromatogr. Sci.30, 217 (1992).

    Article  CAS  Google Scholar 

  13. R. Beckett, At. Spectrosc.12, 228 (1991).

    CAS  Google Scholar 

  14. H. E. Taylor, J. R. Garbarino, D. M. Murphy, R. Beckett, Anal. Chem.64, 2036 (1992).

    Article  CAS  Google Scholar 

  15. D. M. Murphy, J. R. Garbarino, H. E. Taylor, B. T. Hart, R. Beckett, J. Chromatogr.642, 459 (1993).

    Article  CAS  Google Scholar 

  16. J. C. Giddings, Anal. Chem.58, 735 (1986).

    Article  CAS  Google Scholar 

  17. M. Martin, P. S. Williams, in “Theoretical Advancement in Chromatography and Related Separation Technique”, NATO ASI, F. Dondi and G. Guiochon, Eds., Kluwer Academic Press, 1992, p. 513.

  18. F. J. F. Yang, M. N. Myers, J. C. Giddings, Anal. Chem.46, 1924 (1974).

    Article  CAS  Google Scholar 

  19. P. S. Williams, J. C. Giddings, Anal. Chem.59, 2038 (1987).

    Article  CAS  Google Scholar 

  20. M. E. Hansen, J. C. Giddings, R. Beckett, J. Colloid Interface Sci.132, 300 (1989).

    Article  CAS  Google Scholar 

  21. M. E. Hansen, J. C. Giddings, Anal. Chem.61, 811 (1989).

    Article  CAS  Google Scholar 

  22. W. Stumm, J. J. Morgan, “Aquatic Chemistry”, Wiley-Interscience Pub., John Wiley & Sons, New York, 1981.

    Google Scholar 

  23. B. Aliance, T. G. M. Van De Ven, J. Colloid Interface Sci.155, 465 (1993).

    Article  Google Scholar 

  24. R. J. Hunter, “Foundations of Colloid Science”, Oxford Science Pub., Clarendon Press, Oxford, NY, 1987.

    Google Scholar 

  25. Y. Mori, K. Kimura, M. Tanigaki, Anal. Chem.62, 2668 (1990).

    Article  CAS  Google Scholar 

  26. W. B. Russel, D. A. Saville, W. R. Schowalter, “Colloid Dispersion”, Cambridge University Press., UK, 1989.

    Book  Google Scholar 

  27. D. L. Massart, A. Dijkstra, L. Kaufman, “Evaluation and Optimization of Laboratory Methods and Analytical Procedures”, Elsevier, 1978.

  28. D. L. Massart, B. G. M. Vanderginste, S. N. Deming, Y. Michotte, L. Kaufman, “Chemometrics: a textbook”, Elsevier, 1988.

  29. C. W. Fuller, R. C. Hutton, B. Preston, Analyst106, 913 (1981).

    Article  CAS  Google Scholar 

  30. G. Karaiskakis, A. Koliadima, Chromatographia28, 31 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blo, G., Contado, C., Fagioli, F. et al. Analysis of kaolin by sedimentation field-flow fractionation and electrothermal atomic absorption spectrometry detection. Chromatographia 41, 715–721 (1995). https://doi.org/10.1007/BF02688113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02688113

Key Words

Navigation