Skip to main content

Advertisement

Log in

Expression of type I, type II, and type X collagen genes during altered endochondral ossification in the femoral epiphysis of osteosclerotic (oc/oc) mice

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The osteosclerotic (oc/oc) mouse, a genetically distinct murine mutation that has a functional defect in its osteoclasts, also has rickets and shows an altered endochondral ossification in the epiphyseal growth plate. The disorder is morphologically characterized by an abnormal extension of hypertrophic cartilage at 10 days after birth, which is later (21 days after birth) incorporated into the metaphyseal woven bone without breakdown of the cartilage matrix following vascular invasion of chondrocyte lacunae.In situ hybridization revealed that the extending hypertrophic chondrocytes expressed type I and type II collagen mRNA, as well as that of type X collagen and that the osteoblasts in the metaphysis expressed type II and type X collagen mRNA, in addition to type I collagen mRNA. The topographic distribution of the signals suggests a possible coexpression of each collagen gene in the individual cells. Immunohistochemically, an overlapping deposition of type I, type II, and type X collagen was observed in both the extending cartilage and metaphyseal bony trabeculae. Such aberrant gene expression and synthesis of collagen indicate that pathologic ossification takes place in the epiphyseal/metaphyseal junction ofoc/oc mouse femur in different way than in normal endochondral ossification. This abnormality is probably not due to a developmental disorder in the epiphyseal plate but to the failure in conversion of cartilage into bone, since the epiphyseal plate otherwise appeared normal, showing orderly stratified zones with a proper expression of cartilage-specific genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frost HM, Jee WSS (1994) Perspectives: a vital biomechanical model of the endochondral ossification mechanism. Anat Rec 240:435–446

    Article  CAS  PubMed  Google Scholar 

  2. Sandberg M, Vurio E (1987) Localization of types I, II, and III collagen mRNAs in developing human skeletal tissues by in situ hybridization. J Cell Biol 104:1077–1084

    Article  CAS  PubMed  Google Scholar 

  3. Iyama K, Ninomiya Y, Olsen BR, Linsenmayer TF, Trelstad RL, Hayashi M (1991) Spatiotemporal pattern of type X collagen gene expression and collagen deposition in embryonic chick vertebrae undergoing endochondral ossification. Anat Rec 229:462–472

    Article  CAS  PubMed  Google Scholar 

  4. Kwan APL, Dickson IR, Freemont AJ, Grant ME (1989) Comparative studies of type X collagen expression in normal and rachitic chicken epiphyseal cartilage. J Cell Biol 109:1894–1856

    Article  Google Scholar 

  5. Reginato AM, Sanz-Rodriguez C, Jimenez SA (1995) Biosynthesis and characterization of type X collagen in human fetal epiphyseal growth plate cartilage. Osteoarthritis Cartilage 3:105–116

    Article  CAS  PubMed  Google Scholar 

  6. Marks SC Jr (1984) Congenital osteopetrotic mutations as probes of the origin, structure and function of osteoclasts. Clin Orthop 189:239–263

    Google Scholar 

  7. Seifert MF, Marks SC Jr (1985) Morphological evidence of reduced bone resorption in the osteosclerotic (oc) mouse. Am J Anat 172:141–153

    Article  CAS  PubMed  Google Scholar 

  8. Udagawa N, Sasaki T, Akatsu T, Takahashi N, Tanaka S, Tamura T, Tanaka H, Suda T (1992) Lack of bone resorption in osteosclerotic (oc/oc) mice is due to a defect in osteoclast progenitors rather than the local microenvironment provided by osteoblastic cells. Biochem Biophys Res Comm 184:67–72

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura I, Takahashi N, Udagawa N, Moriyama Y, Kurokawa T, Jimi E, Sasaki T, Suda T (1997) Lack of vacuolar proton ATPase association with the cytoskeleton in osteoclasts of osteosclerotic (oc/oc) mice. FEBS Lett 401:207–212

    Article  CAS  PubMed  Google Scholar 

  10. Scimeca J-C, Franchi A, Trojani C, Parrinello H, Grosgeorge J, Robert C, Jaillon O, Poirier C, Gaudray P, Carle GF (2000) The gene encording the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 26:207–213

    Article  CAS  PubMed  Google Scholar 

  11. Seifert MF, Marks SC Jr (1987) Congenitally osteosclerotic (oc/oc) mice are resistant to cure by transplantation of bone marrow or spleen cells from normal littermates. Tissue Cell 19:29–37

    Article  CAS  PubMed  Google Scholar 

  12. Seifert MF, Gray RW, Bruns ME (1988) Elevated levels of vitamin D-dependent calcium-binding protein (calbindin-D9k) in the osteosclerotic (oc) mouse. Endocrinology 122:1067–1073

    Article  CAS  PubMed  Google Scholar 

  13. Lester DR Jr, Seifert MF (1996) Maternal high calcium diet fails to reverse rickets in the osteosclerotic mouse. Clin Orthop 330:271–280

    Article  Google Scholar 

  14. Banco RM, Seifert MF, Marks SC Jr, McGuire JL (1985) Rickets and osteopetrosis: the osteosclerolic (oc) mouse. Clin Orthop 201:238–246

    Google Scholar 

  15. Kaplan FS, August CS, Fallon MD, Ganson F, Haddad JG (1993) Osteopetrorickets. The paradox of plenty. Pathophysiology and treatment. Clin Orthop 294:64–78

    Google Scholar 

  16. Reginato AM, Shapiro IM, Lash JW,, Jimenez (1988) Type X collagen alteration in rachitic chick epiphyseal growth cartilage. J Biol Chem 263:9938–9945

    CAS  PubMed  Google Scholar 

  17. Kato Y, Shimazu A, Iwamoto M, Nakashima K, Koike T, Suzuki F, Nishii Y, Sato K (1990) Role of 1,25-dihydroxycholecalciferol in growth-plate cartilage: inhibition of terminal differentiation of chondrocytesin vitro andin vivo. Proc Natl Acad Sci USA 87:6522–6526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nomura S, Hirakawa K, Nagoshi J, Hirota S, Kim H-M, Takemura T, Nakase N, Takaoka K, Matsumoto S, Nakajima Y, Takano-Yamamoto T, Ikeda T, Kitamura Y (1993) Method for detecting the expression of bone matrix protein by in situ hybridization using decalcified mineralized tissue. Acta Histochem Cytochem 26:303–309

    Article  CAS  Google Scholar 

  19. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Warb Z (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lewinson D, Silbermann M (1992) Chondroclasts and endothelial cells collaborate in the process of cartilage resorption. Anat Rec 233:504–514

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura H, Ozawa H (1996) Ultrastructural, enzyme-, lectin-, and immunohistochemical studies of the erosion zone in rat tibiae. J Bone Miner Res 11:1158–1164

    Article  CAS  PubMed  Google Scholar 

  22. Hunter WL, Arsenault AL, Hodsman AB (1991) Rearrangement of the metaphyseal vasculature of the rat growth plate in rickets and rachitic reversal: a model of vascular arrest and angiogenesis renewed. Anat Rec 229:453–461

    Article  CAS  PubMed  Google Scholar 

  23. Hiraki Y, Inoue H, Iyama K-I, Kamizono A, Ochiai M, Shukunami C, Iijima S, Suzuki F, Kondo J (1997) Identification of chondromodulin I as a novel endothelial cell growth inhibitor. J Biol Chem 272:32419–32426

    Article  CAS  PubMed  Google Scholar 

  24. Shukunami C, Iyama K-I, Inoue H, Hiraki Y (1999) Spatiotemporal pattern of the mouse chondromodulin-I gene expression and its regulatory role in vascular invasion into cartilage during endochondral bone formation. Int J Dev Biol 43:39–49

    CAS  PubMed  Google Scholar 

  25. Cancedda FD, Melchiori A, Benelli R, Gentili C, Masiello L, Campanile G, Cancedda R, Albini A (1995) Production of angiogenesis inhibitors and stimulators is modulated by cultured growth plate chondrocytes during in vitro differentiation: dependence on extracellular matrix assembly. Eur J Cell Biol 66:60–68

    PubMed  Google Scholar 

  26. Alini M, Marriott A, Chen T, Abe S, Poole AR (1996) A novel angiogenic molecule produced at the time of chondrocyte hypertrophy during endochondral bone formation. Dev Biol 176:124–132

    Article  CAS  PubMed  Google Scholar 

  27. Thesingh CW, Groot CG, Wassenaar AW (1991) Transdifferentiation of hypertrophic chondrocytes into osteoblasts in murine fetal metatarsal bones induced by co-cultured cerebrum. Bone Miner 12:25–40

    Article  CAS  PubMed  Google Scholar 

  28. Silbermann M, Reddi AH, Hand AR, Leapman RD, von der Mark K, Franzen A (1987) Further characterization of the extracellular matrix in the mandibular condyle in neonatal mice. J Anat 151:169–188

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Silbermann M, von der Mark K (1990) An immunohistochemical study of matrical proteins in the mandibular condyle of neontal mice. I. Collagen. J Anat 170:11–22

    CAS  PubMed  Google Scholar 

  30. Hughes SS, Hicks DG, O’Keefe RJ, Hurwitz SR, Crabb ID, Krasinskas AM, Loveys L, Puzas JE, Rosier RN (1995) Shared phenotypic expression of osteoblasts and chondrocytes in fracture callus. J Bone Miner Res 10:533–544

    Article  CAS  PubMed  Google Scholar 

  31. Scammell BE, Roach HI (1996) A new role for the chondrocyte in fracture repair: endochondral ossification includes direct bone formation by former chondrocytes. J Bone Miner Res 11:737–745

    Article  CAS  PubMed  Google Scholar 

  32. Yasui N, Sato M, Ochi T, Kimura T, Kawahata H, Kitamura Y, Nomura S (1997) Three modes of ossification during distraction osteogenesis in the rat. J Bone Joint Surg 79-B:824–830

    Article  Google Scholar 

  33. Nagatsuka H, Inoue M, Akagi T, Ishiwari Y, Guiru L, Huang B, Takagi T, Gomaa M, Attia-Zouair G, Nagai N (1997) Gene expression of chondro-osseous cell in heterotopic bone formation induced by rhBMP-2. J Hard Tissue Biol 6:10–15

    CAS  Google Scholar 

  34. Roach HI (1992) Trans-differentiation of hypertrophic chondrocytes into cells capable of producing mineralized bone. Bone Miner 19:1–20

    Article  CAS  PubMed  Google Scholar 

  35. Galotto M, Campanile G, Robino G, Descalzi-Cancedda F, Bianco P, Cancedda R (1994) Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chick embryo. J Bone Miner Res 9:1239–1249

    Article  CAS  PubMed  Google Scholar 

  36. Grant WT, Wang G-J, Balian G (1987) Type X collagen synthesis during endochondral ossification in fracture repair. J Biol Chem 262:9844–9849

    CAS  PubMed  Google Scholar 

  37. Nagamoto N, Iyama K, Kitaoka M, Ninomiya Y, Yoshioka H, Mizuta H, Takagi K (1993) Rapid expression of collagen type X gene of nonhypertrophic chondrocytes in the grafted chick periosteum demonstrated by in situ hybridization. J Histochem Cytochem 41:679–684

    Article  CAS  PubMed  Google Scholar 

  38. Aigner T, Greskötter KR, Fairbank JCT, von der Mark K, Urban JPG (1998) Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs. Calcif Tissue Int 63:263–268

    Article  CAS  PubMed  Google Scholar 

  39. Aigner T, Dietz U, Stöß H, von der Mark K (1995) Differential expression of collagen types I, II, and X in human osteophytes. Lab Invest 73:236–243

    CAS  PubMed  Google Scholar 

  40. Jacenko O, Tuan RS (1986) Calcium deficiency induces expression of cartilage-like phenotype in chick embryonic calvaria. Dev Biol 115:215–232

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamasaki, A., Itabashi, M., Sakai, Y. et al. Expression of type I, type II, and type X collagen genes during altered endochondral ossification in the femoral epiphysis of osteosclerotic (oc/oc) mice. Calcif Tissue Int 68, 53–60 (2001). https://doi.org/10.1007/BF02685003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685003

Key words

Navigation