Skip to main content
Log in

Death of solid tumor cells induced by fas ligand expressing primary myoblasts

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Anticancer therapy for solid tumors suffers from inadequate methods for the localized administration of cytotoxic agents. Fas ligand (FasL) has been reported to be cytotoxic to a variety of cells, including certain tumor cell lines. We therefore postulated that myoblasts could serve as non-transformed gene therapy vehicles for the continuous localized delivery of cytotoxic anticancer agents such as FasL. However, contrary to previous reports, fluorescence activated cell sorting (FACS) analyses revealed that both primary mouse and human myoblasts express Fas, the receptor for FasL. To avoid self-destruction and test the cytotoxic potential of myoblasts, the cells were isolated from mice deficient in Fas (lpr/lpr), the mouse counterpart of human autoimmune lymphoproliferative syndrome (ALPS). These primary mouse myoblasts were transduced with a retroviral vector encoding mouse FasL and expression of a biologically active and soluble form of the molecule was confirmed by the apoptotic demise of cocultured Fas-expressing Jurkat cells, the standard in the field. To test whether the lpr myoblasts expressing FasL could be used in anticancer therapy, human rhabdomyosarcoma derived cell lines were assayed for Fas and then tested in the apoptosis coculture assay. The majority of Fas-expressingmuscle tumor cells were rapidly killed. Moreover, FasL expressing myoblasts were remarkably potent; indeed well characterized cytotoxic antibodies to Fas were only 20% as efficient at killing rhabdomyosarcoma cells as FasL expressing myoblasts. These findings together with previous findings suggest that primary myoblasts, defective in Fas but genetically engineered to express FasL, could function as potent anticancer agents for use in the localized destruction of solid tumors in vivo by three synergistic mechanisms: (1) directly via Fas/FasL mediated apoptosis, (2) indirectly via neutrophil infiltration and immunodestruction, and (3) as allogeneic inducers of a bystander effect via B and T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Nagata, S. and Golstein, P. (1995).Science 267:1449–1456.

    Article  PubMed  CAS  Google Scholar 

  2. Nagata, S. (1997).Cell 88:355–365.

    Article  PubMed  CAS  Google Scholar 

  3. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A., and Nagata, S. (1992).Nature 356:314–317.

    Article  PubMed  CAS  Google Scholar 

  4. Fisher, G.H., Rosenberg, F.J., Straus, S.E., Dale, J.K., Middleton, L.A., Lin, A.Y., Strober, W., Lenardo, M.J., and Puck, J.M. (1995).Cell 81:935–946.

    Article  PubMed  CAS  Google Scholar 

  5. Ramsdell, F., Seaman, M.S., Miller, R.E., Tough, T.W., Alderson, M.R., and Lynch, D.H. (1994),Eur. J. Immunol. 24:928–933.

    Article  PubMed  CAS  Google Scholar 

  6. Takahashi, T., Tanaka, M., Brannan, C.I., Jenkins, N.A., Copeland, N.G., Suda, T., and Nagata, S. (1994).Cell 76:969–976.

    Article  PubMed  CAS  Google Scholar 

  7. Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R., and Ferguson, T.A. (1995).Science 270:1189–1192.

    Article  PubMed  CAS  Google Scholar 

  8. Bellgrau, D., Gold, D., Selawry, H., Moore, J., Franzusoff, A., and Duke, R.C. (1995).Nature 377:630–632.

    Article  PubMed  CAS  Google Scholar 

  9. Hahne, M., Rimoldi, D., Schröter, M., Romero, P., Schreier, M., French, L.E., Schneider, P., Bornand, T., Fontana, A., Lienard, D., Cerottini, J.-C., and Tschopp, J. (1996).Science 274:1363–1366.

    Article  PubMed  CAS  Google Scholar 

  10. Lau, H.T., Yu, M., Fontana, A., and C.J. Stoecker (1996).Science 273:109–112.

    Article  PubMed  CAS  Google Scholar 

  11. Seino, K., Kayagaki, N., Okumura, K., and Yagita, H. (1997).Nature Med. 3:165–170.

    Article  PubMed  CAS  Google Scholar 

  12. Allison, J., Georgiou, H.M., Strasser, A., and Vaux, D.L. (1997).Proc. Natl. Acad. Sci. U.S.A. 94:3943–3947.

    Article  PubMed  CAS  Google Scholar 

  13. Kang, S.-M., Schneider, D.B., Lin, Z., Hanahan, D., Dichek, D.A., Stock, P.G., and Baekkeskov, S. (1997).Nature Med. 3:738–743.

    Article  PubMed  CAS  Google Scholar 

  14. Rando, T.A., and Blau, H.M. (1994).J Cell Biol 125:1275–1287.

    Article  PubMed  CAS  Google Scholar 

  15. Rando, T.A. and Blau, H.M. (1997). InMethods in Muscle Biology, (Ed) Emerson, C.P. and Sweeney, H.L. (Academic Press, San Diego), pp. 261–272.

    Google Scholar 

  16. Springer, M.L., Rando, T.A., and Blau, H.M. (1997). InCurrent Protocols in Human Genetics, (Ed) Boyle, A.L. (John Wiley & Sons, New York), pp. 13.4.1–13.4.19.

    Google Scholar 

  17. McGahon, A.J., Martin, S.J., Bissonnette, R.P., Mahboubi, A., Shi, Y., Mogil, R.J., Nishioka, W.K., and Green, D.R. (1995). InThe End of the (Cell) Line: Methods for the Study of Apoptosis in Vitro, (Ed) Schwartz, L.M. and Osborne, B.A. (Academic Press, San Diego, California), pp. 153–185.

    Google Scholar 

  18. Douglass, E.C., Valentine, M., Ectubanas, E., Parham, D., Webber, B.L., Houghton, P.J., and Green, A.A. (1987).Cytogenet. Cell Genet. 45:148–155.

    Article  PubMed  CAS  Google Scholar 

  19. Hazelton, B.J., Houghton, J.A., Parham, D.M., Douglass, E.C., Torrance, P.M., Holt, H., and Houghton, P.J. (1987).Cancer Res. 47:4501–4507.

    PubMed  CAS  Google Scholar 

  20. Shapiro, D.N., Houghton, P.J., Hazelton, B.J., Germain, G.S., Murti, K.G., Rahman, A., and Houghton, J.A. (1990).Cancer Res. 50:6002–6009.

    PubMed  CAS  Google Scholar 

  21. Trauth, B.C., Klas, C., Peters, A.M., Matzku, S., Moller, P., Falk, W., Debatin, K.M., and Krammer, P.H. (1989).Science 245:301–305.

    Article  PubMed  CAS  Google Scholar 

  22. Rensing-Ehl, A., Frei, K., Flury, R., Matiba, B., Mariani, S.M., Weller, M., Aebischer, P., Krammer, P.H., and Fontana, A. (1995).Eur. J. Immunol. 25:2253–2258.

    Article  PubMed  CAS  Google Scholar 

  23. Bezwoda, W.R., Esser, J.D., Dansey, R., Kessel, I., and Lange, M. (1991).Cancer 68:867–872.

    Article  PubMed  CAS  Google Scholar 

  24. Gussoni, E., Blau, H.M., and Kunkel, L.M. (1997).Nature Med. 3:970–977.

    Article  PubMed  CAS  Google Scholar 

  25. Kang, S.-M., Hofmann, A., Le, D., Springer, M.L., Stock, P.-G., and Blau, H.M. (1997).Science 278:1322–1325.

    Article  PubMed  CAS  Google Scholar 

  26. Kinoshita, S., Su, L., Amano, M., Timmerman, L.A., Kaneshima, H., and Nolan, G.P. (1997).Immunity 6:235–244.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, A., Blau, H.M. Death of solid tumor cells induced by fas ligand expressing primary myoblasts. Somat Cell Mol Genet 23, 249–257 (1997). https://doi.org/10.1007/BF02674416

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674416

Keywords

Navigation