Skip to main content
Log in

Altered basal and insulin-stimulated phosphotyrosine phosphatase (PTPase) activity in skeletal muscle from NIDDM patients compared with control subjects

  • Originals
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

To measure possible changes in basal and insulin-stimulated phosphotyrosine phosphatase (PTPase) activity in skeletal muscle from insulin-resistant individuals, soluble and particulate muscle fractions were prepared from biopsies taken before and after a 3-h hyperinsulinaemic euglycaemic clamp in eight non-insulin-dependent diabetic (NIDDM) patients and nine control subjects. We used a sensitive sandwich-immunofluorescence assay and the human insulin receptor as the substrate. PTPase activity was expressed as percentage of dephosphorylation of phosphotyrosyl-residues in immobilized insulin receptors per 2 h incubation time per 83 µg and 19 µg muscle fraction protein (soluble and particulate fraction, respectively). In the diabetic soluble muscle fractions, the basal PTPase activity was decreased compared with that of control subjects (11.5±5.5 vs 27.5±3.3,p<0.04, mean±SEM). In the particulate muscle fractions from the control subjects, PTPase activity was increased after 3 h hyperinsulinaemia (20.0±3.2 vs 30.2±3.6,p<0.03) and in the corresponding soluble fractions PTPase activity seemed decreased (27.5±3.3 vs 19.9±5.9, NS). No effect of insulin on PTPase activity was found in NIDDM patients (25.1±4.1 vs 27.2±5.2, 11.5±5.5 vs 15.1±4.5 [particulate and soluble fractions], NS). In conclusion, we found that the basal PTPase activity in soluble muscle fractions was decreased in NIDDM patients; furthermore, insulin stimulation was unable to increase PTPase activities in the particulate fractions, as opposed to the effect of insulin in control subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NIDDM:

Non-insulin-dependent diabetes mellitus

PTPase:

phosphotyrosine phosphatase

OGTT:

oral glucose tolerance test

Hepes:

4-(2-hydroxyethyl)-l-piperazineethane sulphonic acid

PMSF:

phenyl methyl sulphonyl-fluoride

References

  1. Bogardus C (1989) Perspective: does insulin resistance primarily affect skeletal muscle? Diabetes Metab Rev 5: 527–528

    Article  CAS  PubMed  Google Scholar 

  2. Olefsky JM (1989) Pathogenesis of non-insulin-dependent diabetes (type II). In: DeGroot LJ, Besser GM, Cahill GF et al. (eds) Endocrinology. Vol 2. WB Saunders Co, Philadelphia, pp 1369–1388

    Google Scholar 

  3. Kolterman OG, Gray RS, Griffin J et al. (1981) Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J Clin Invest 68: 957–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Truglia JA, Livingston JN, Lockwood DH (1985) Insulin resistance: receptor and post-binding defects in human obesity and non-insulin-dependent diabetes mellitus. Am J Med 979 [Suppl 2B]: 13–22

    Article  Google Scholar 

  5. Chou CK, Dull TJ, Russell DS et al. (1987) Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J Biol Chem 262: 1842–1847

    CAS  PubMed  Google Scholar 

  6. Lau KHW, Farley JR, Baylink DJ (1989) Phosphotyrosyl protein phosphatases. Biochem J 257: 23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyerovitch J, Backer JM, Csermely P, Shoelson SE, Kahn CR (1992) Insulin differentially regulates protein phosphotyrosine phosphatase activity in rat hepatoma cells. Biochemistry 31: 10338–10344

    Article  CAS  PubMed  Google Scholar 

  8. McGuire MC, Fields RM, Nyomba BL et al. (1991) Abnormal regulation of protein tyrosine phosphatase activities in skeletal muscle of insulin-resistant humans. Diabetes 40: 939–942

    Article  CAS  PubMed  Google Scholar 

  9. Hauguel-De Mouzon S, Peraldi P, Alengrin F, Van Obberghen E (1993) Alteration of phosphotyrosine phosphatase activity in tissues from diabetic and pregnant rats. Endocrinology 132: 67–74

    CAS  PubMed  Google Scholar 

  10. Olichon-Berthe C, Hauguel-De Mouzon S, Péraldi P, Van Obberghen E, Le Marchand-Brustel Y (1994) Insulin receptor dephosphorylation by phosphotyrosine phosphatases obtained from insulin-resistant obese mice. Diabetologia 37: 56–60

    Article  CAS  PubMed  Google Scholar 

  11. Kusari J, Kenner KA, Suh K-I, Hill DE, Henry RR (1994) Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance. J Clin Invest 93: 1156–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahmad F, Goldstein BJ (1995) Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism 44: 1175–1184

    Article  CAS  PubMed  Google Scholar 

  13. Worm D, Handberg A, Hoppe E, Vinten J, Beck-Nielsen H (1996) Decreased skeletal muscle phosphotyrosine phosphatase (PTPase) activity towards insulin receptors in insulin-resistant Zucker rats measured by delayed Europium fluorescence. Diabetologia 39: 142–148

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto N, Zhang WR, Goldstein BJ (1992) Insulin receptor and epidermal growth factor receptor dephosphorylation by three major rat liver protein-tyrosine phosphatases expressed in a recombinant bacterial system. Biochem J 284: 569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldstein BJ (1992) Protein-tyrosine phosphatases and the regulation of insulin action. J Cell Biochem 48: 33–42

    Article  CAS  PubMed  Google Scholar 

  16. Report of WHO study group (1985) Diabetes mellitus. Tech Rep Ser 727: 1–113

    Google Scholar 

  17. Hother-Nielsen O, Mengel A, Møller J, Rasmussen O, Schmitz O, Beck-Nielsen H (1992) Assessment of glucose turnover rates in euglycaemic clamp studies using primed-constant [3-3H]-glucose infusion and labelled or unlabelled glucose infusates. Diabet Med 9: 840–849

    Article  CAS  PubMed  Google Scholar 

  18. Lindström TH, Arnqvist HJ, von Schenck HH (1992) Effect of conventional and intensified insulin therapy on free-insulin profiles and glycemic control in NIDDM. Diabetes Care 15: 27–34

    Article  PubMed  Google Scholar 

  19. Prigent SA, Stanley KK, Siddle K (1990) Identification of epitopes on the human insulin receptor reacting with rabbit polyclonal antisera and mouse monoclonal antibodies. J Biol Chem 265: 9970–9977

    CAS  PubMed  Google Scholar 

  20. Ganderton RH, Stanley KK, Field CE, Coghlan MP, Soos MA, Siddle K (1992) A monoclonal anti-peptide antibody reacting with the insulin receptor β-subunit. Biochem J 288: 195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle protein dye bonding. Anal Biochem 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  22. Swarup G, Speeg KV, Cohen S, Garbers DL (1982) Phosphotyrosyl-protein phosphatase of TCRC-2 cells. J Biol Chem 257: 7298–7301

    CAS  PubMed  Google Scholar 

  23. Ahmad F, Considine RV, Goldstein BJ (1995) Increased abundance of the receptor-type protein-tyrosine phosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissue of obese human subjects. J Clin Invest 95: 2806–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klip A, Leiter LA (1990) Cellular mechanism of action of metformin. Diabetes Care 13: 696–704

    Article  CAS  PubMed  Google Scholar 

  25. Ahmad F, Li PM, Meyerovitch PM, Goldstein BJ (1995) Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J Biol Chem 270: 20503–20508

    Article  CAS  PubMed  Google Scholar 

  26. Kulas DT, Zhang WR, Goldstein BJ, Furlanetto RW, Mooney RA (1995) Insulin receptor signaling is augmented by antisense inhibition of the protein tyrosine phosphatase LAR. J Biol Chem 270: 2435–2438

    Article  CAS  PubMed  Google Scholar 

  27. Lammers R, Bossenmaier B, Cool DE et al. (1993) Differential activities of protein tyrosine phosphatases in intact cells. J Biol Chem 268: 22456–22462

    CAS  PubMed  Google Scholar 

  28. Møller NPH, Møller KB, Lammers R et al. (1995) Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatases α and ε. J Biol Chem 270: 23126–23131

    Article  PubMed  Google Scholar 

  29. Xiao S, Roses DW, Sasaoka T et al. (1994) Syp (SH-PTP2) is a positive mediator of growth factor-stimulated mitogenic signal transduction. J Biol Chem 269: 21244–21248

    CAS  PubMed  Google Scholar 

  30. Yamauchi K, Milarski KL, Saltiel AR, Pessin JE (1995) Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling. Proc Natl Acad Sci USA 92: 664–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Milarski KL, Saltiel AR (1994) Expression of catalytically inactive Syp phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J Biol Chem 269: 21239–21243

    CAS  PubMed  Google Scholar 

  32. Vogel W, Lammers R, Jiaoti H, Ullrich A (1993) Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 259: 1611–1614

    Article  CAS  PubMed  Google Scholar 

  33. Kuhne MR, Zhao Z, Lienhard GE (1995) Evidence against dephophorylation of insulin-elicited phosphotyrosine proteins in vivo by the phosphatase PTP2C. Biochem Biophys Res Comm 211: 190–197

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worm, D., Vinten, J., Staehr, P. et al. Altered basal and insulin-stimulated phosphotyrosine phosphatase (PTPase) activity in skeletal muscle from NIDDM patients compared with control subjects. Diabetologia 39, 1208–1214 (1996). https://doi.org/10.1007/BF02658508

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658508

Keywords

Navigation