Skip to main content
Log in

In situ FTIR and surface analysis of the reaction of trimethylgallium and ammonia

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using a combination of in situ FTIR spectroscopy and detailed surface analysis, we find that TMGa decomposes at the same rate in either hydrogen or nitrogen forT < 300° C. Although ammonia does not decompose under these conditions, mixing TMGa with ammonia increases the rate of methane formation. Reacting perdeutroammonia with TMGa shows that hydrogen from the ammonia is incorporated into the product methane (whereas deuterium in the gas phase is not incorporated into the gaseous product). TMGa and ND3 do react; however, nitrogen incorporation in the growing film is temperature dependent. Further, although the decomposition of TMGa occurs in the gas phase, the last steps of the decomposition/reaction occur on the substrate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bhat, J. Electron. Mater.14, 433 (1985).

    CAS  Google Scholar 

  2. C. H. Chen, and G. B. Stringfellow, J. Electron. Mater.16 (4), 9 (1987).

    Google Scholar 

  3. J. Nishizawa, H. Abe, T. Kurabayashi, and N. Sukarai, J. Vac. Sci. Technol.A4, 706 (1986).

    Google Scholar 

  4. P. Balk, H. Heinecke, N. Putz, C. Plass, and H. Luth, J. Vac. Sci. Technol.A4, 711 (1986).

    Google Scholar 

  5. T. Wiseman, C. Juang, and K. A. Jones, Mater. Res. Soc. Symp.54, 373 (1986).

    CAS  Google Scholar 

  6. S. Bhat, S. Ashok, S. F. Fonash, and L. Tongson, J. Electron. Mater.14, 405 (1985).

    CAS  Google Scholar 

  7. M. Matloubian and M. Gershenzon, J. Electron. Mater.14 (5), 633 (1985).

    CAS  Google Scholar 

  8. H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, J. Electrochem. Soc.118, 1865 (1971).

    Google Scholar 

  9. T. Kawabata, T. Matsuda, and S. Koike, J. Appl. Phys.56, 2367 (1984).

    Article  CAS  Google Scholar 

  10. S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. D. Danner, and H. C. Lee, J. Cryst. Growth77, 188 (1986).

    Article  CAS  Google Scholar 

  11. M. Yoshida, H. Watanabe, and F. Uesugi, J. Electrochem. Soc. 232, 677 (1985).

    Article  Google Scholar 

  12. M. G. Jacko and S. J. W. Price, Canad. J. Chem.41, 1560 (1963).

    Article  CAS  Google Scholar 

  13. J. Haigh, and S. O’Brien, J. Cryst. Growth67, 75 (1984).

    Article  CAS  Google Scholar 

  14. J. R. Durig, and K. K. Chatterjee, J. Raman Spec.11, 168 (1981).

    Article  CAS  Google Scholar 

  15. J. R. Durig, C. B. Bradley, and J. D. Odom, Inorganic Chem.21, 1466 (1982).

    Article  CAS  Google Scholar 

  16. J. Nishizawa, and T. Kurabayashi, J. Electrochem. Soc.130, 413 (1983).

    Article  CAS  Google Scholar 

  17. C. H. Cheng, K. A. Jones and K. M. Motyl, J. Electron. Mater.13, 703 (1984).

    CAS  Google Scholar 

  18. J. E. Butler, N. Bottka, R. S. Sillmon, and D. K. Gaskill, J. Cryst. Growth77, 163 (1986).

    Article  CAS  Google Scholar 

  19. D. H. Reep and S. K. Ghandi, J. Electrochem. Soc. 130, 675 (1983).

    Google Scholar 

  20. N. Putz, E. Veuhoff, H. Heinecke, M. Heyen, H. Luth, and P. Balk, J. Vac. Sci. Tech.B3, 671 (1985).

    Google Scholar 

  21. K. A. Jones, Prog. Cryst. Growth and Char.13, 291 (1986).

    Article  CAS  Google Scholar 

  22. W. M. Kays, Trans, of the ASME.77, 1265 (1955).

    CAS  Google Scholar 

  23. G. Hertzburg,Infrared and Raman Spectra of Polyatomic Molecules, von Nostrand Reinhold Co. New York, 1945.

    Google Scholar 

  24. R. E. Hilller, Jr. and J. W. Straley, J. Mol. Spec.5, 24 (1960).

    Article  Google Scholar 

  25. Clara D. Cravere ed.The Colblentz Society Desk Book of In- frared Spectra. Colblentz Society Inc., Kirkwood MO, 1977.

    Google Scholar 

  26. D. J. Schlyer and M. A. Ring, J. Organomet. Chem.114, 9 (1976).

    Article  CAS  Google Scholar 

  27. C. A. Larsen, N. I. Buchan, and G. B. Stringfellow, Appl. Phys. Lett.52, (6) 480 (1988).

    Article  CAS  Google Scholar 

  28. D. J. Schlyer, and M. A. Ring, J. Organomet. Chem.71, C25 (1974).

    Article  CAS  Google Scholar 

  29. J. Warnatz, Comb. Sci. Tech.34, 177 (1983).

    Article  CAS  Google Scholar 

  30. A. Tripathi, D. Mazzarese, K. A. Jones, W. C. Conner, J. Electron. Mater.18, 45 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzarese, D., Tripathi, A., Conner, W.C. et al. In situ FTIR and surface analysis of the reaction of trimethylgallium and ammonia. J. Electron. Mater. 18, 369–377 (1989). https://doi.org/10.1007/BF02657985

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657985

Key words

Navigation