Skip to main content
Log in

Metastable crystalline and amorphous structures formed in the Cu-W system by vapor deposition

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The possibility of producing nonequilibrium amorphous and crystalline phases in the Cu-W system is of interest because, under equilibrium conditions, no mutual solubility is expected between Cu and W. Triode sputtered coatings (45 to 150 μm thick, produced at deposition rates between 20 and 150 Å/s) consisted of amorphous and metastable crystalline phases. The latter remained decomposition-resistant on heating to various temperatures between 340 °C and 600 °C (the maximum temperature of exposure). The amorphous phase in such coatings crystallized on heating into a metastable body-centered cubic (bcc) phase, and the crystallization temperatureT x was found to decrease across the phase diagram from 450 °C to 340 °C as the percentage of W increased from 26 to 60 at. pct. Samples containing amorphous phase regions, when subjected to heating between 150 °C and 250 °C, showed an unusual rapid precipitation of Cu at the sample surface, indicating an easy diffusion of the Cu component. This occurred without crystallization of the remaining slightly tungsten-enriched amorphous matrix. Microhardness measurements in sputtered two-phase amorphous and bcc regions have shown that in alloys of the same composition, the amorphous phase was always softer than the bcc solid solution phase. X-ray, microprobe, and optical evidence suggests that the amorphous films deposited at very low temperatures(i.e., at liquid N2) may subsequently undergo a phase separation upon heating to room temperature and prior to crystallization. Earlier work and present studies of vapordeposited alloys in this system confirm that the observed phases and microstructures can be related to free energy trends estimated from thermodynamic considerations and to specific deposition parameters, such as the substrate temperature and the deposition rates, which influence the kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.F. Rizzo, T.B. Massalski, and E.D. McClanahan:Metall. Trans. A, 1988, vol. 19A, pp. 5–12.

    CAS  Google Scholar 

  2. H.F. Rizzo, L.E. Tanner, M.A. Wall, E.D. McClanahan, and T.B. Massalski: inFundamentals of Beam-Solid Interactions and Transient Thermal Processing, Materials Research Society Proceedings 100, M.J. Aziz, L.E. Rehn, and B. Stritzker, eds., Materials Research Society, Pittsburgh, PA, 1988, pp. 81–85.

    Google Scholar 

  3. H.F. Rizzo, A. Echeverria, T.B. Massalski, and H. Baxi:Mater. Res. Soc. Symp. Proc, 1989, vol. 128, pp. 231–36.

    CAS  Google Scholar 

  4. M. Nastasi, F.W. Saris, L.S. Hung, and J.W. Mayer:J. Appl. Phys., 1985, vol. 58(8), pp. 3052–58.

    Article  CAS  Google Scholar 

  5. Han Westendorp, Zhong-Lie Wang, and Fran W. Saris:Nucl. Instrum. Methods, 1982, vol. 194, pp. 453–456.

    Article  CAS  Google Scholar 

  6. Z.L. Wang, J.F.M. Westendorp, and F.W. Saris:Nucl. Instrum. Methods, 1983, vol. 209 210, pp. 115–24.

    Google Scholar 

  7. A. Schafer and G. Menzel:Thin Solid Films, 1978, vol. 52, pp. 11–21.

    Article  Google Scholar 

  8. A.G. Dirks and J.J. van der Broek:J. Vac. Sci. Technol. 1985, vol. A3 (6), pp. 2618–22.

    Google Scholar 

  9. A.R. Miedema and A.K. Niessen:Suppl. to Trans. JIM, 1988, vol. 29, pp. 209–13.

    Google Scholar 

  10. T. Egami and Y. Waseda:J. Non-Cryst. Solids, 1984, vol. 64, pp. 113–34.

    Article  CAS  Google Scholar 

  11. P.R. Subramanian and D.E. Laughlin: inPhase Diagrams of Binary Tungsten Alloys, S.V. Nagender Naidu and P. Rama Rao, eds., Indian Institute of Metals, Calcutta, 1991, pp. 76–79.

    Google Scholar 

  12. A.R. Miedema, P.F. de Chatel, and F.R. de Boer:Physica, 1980, vol. 100B, pp. 1–28.

    Google Scholar 

  13. T. Egami and S. Aur:J. Non-Cryst. Solids, 1987, vol. 89, pp. 60–74.

    Article  CAS  Google Scholar 

  14. H.E. Kissinger:Anal. Chem., 1957, vol. 29, 1702–06.

    Article  CAS  Google Scholar 

  15. B. Cantor and R.W. Cahn:Acta Metall., 1976, vol. 24, pp. 845–52.

    Article  CAS  Google Scholar 

  16. N. Saunders and A.P. Miodownik:J. Mater. Sci., 1987, vol. 22, pp. 629–37.

    Article  CAS  Google Scholar 

  17. N. Gjostein: inSurfaces and Interfaces I —Chemical and Physical Characteristics J.J. Burke, N.L. Reed, and V. Weiss, eds., Syracuse University Press, Syracuse, NY, 1982, pp. 271–304.

    Google Scholar 

  18. Kubaschewski and C.B. Alcock:Metallurgical Thermochemistry, 5th ed., Pergamon Press, 1978, pp. 359–75.

  19. G. Edrlich and F.G. Hudda:J. Chem. Phys., 1966, vol. 44, pp. 1039–49.

    Article  Google Scholar 

  20. G. Veltl, B. Scholtz, and H.-D. Kunze:Mater. Sci. Eng., 1991, vol. A134, pp. 1410–14.

    CAS  Google Scholar 

  21. E. Hellstern, H.J. Fecht, Z. Fu, and W.L. Johnson:J. Appl. Phys., 1989, vol. 65, pp. 305–10.

    Article  CAS  Google Scholar 

  22. K. Sakurai, Y. Yamada, C.H. Lee, T. Fukunaga, and U. Mizutani:Mater. Sci. Eng. 1989, vol. A134, pp. 1414–17.

    Google Scholar 

  23. E. Gaffet, C. Louison, M. Hamerlin, and F. Faudot:Mater. Sci. Eng., 1991, vol. A134, pp. 1380–84.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Leave from the Department of Materials Science, Carnegie Mellon University, Pittsburgh, PA 15213

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzo, H.F., Massalski, T.B. & Nastasi, M. Metastable crystalline and amorphous structures formed in the Cu-W system by vapor deposition. Metall Trans A 24, 1027–1037 (1993). https://doi.org/10.1007/BF02657233

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657233

Keywords

Navigation