Skip to main content
Log in

On the mechanism of positive inotropic effects of alpha-adrenoceptor agonists

  • Cellular And Subcellular Mechanisms, Energy Turnover
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The positive inotropic effect of the alpha1-adrenoceptor agonist phenylephrine is accompanied by an increase in the presumed second messengers inositol 1,4,5-trisphosphate (1,4,5-IP3) and inositol 1,3,4,5-tetrakisphosphate (1,3,4,5-IP4). Both 1,4,5-IP3 and 1,3,4,5-IP4 sensitize myocardial contractile proteins in chemically skinned fibers. In addition to the Ca++ releasing effect of 1,4,5-IP3 from the sarcoplasmic reticulum the Ca++-sensitizing effect of the inositol phosphates may play a role in alpha1-adrenergic positive inotropism. In isolated heart muscle preparations from patients with endstage heart failure (due to dilated cardiomyopathy) beta-adrenergic as well as alpha1-adrenergic effects are reduced compared to preparations from healthy hearts. The reduced beta-adrenergic effects can in part be explained by an increased content of signal transducing G1-proteins. It is tempting to investigate whether other G proteins are also altered in severe congestive heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aass H, Skomedal T, Osnes JB (1983) Demonstration of an alpha-adrenoceptor-mediated inotropic effect of norepinephrine in rabbit papillary muscle. J Pharmacol Exp Ther 226:572–578

    PubMed  CAS  Google Scholar 

  2. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Article  PubMed  CAS  Google Scholar 

  3. Blinks JR, Endoh M (1986) Modification of myofibrillar responsiveness to Ca++ as an inotropic mechanism. Circulation 73 (suppl III):III-85–III-98

    CAS  Google Scholar 

  4. Böhm M, Diet F, Feiler G, Kemkes B, Erdmann E (1988)α-adrenoceptors andα-adrenoceptor-mediated positive inotropic effects in failing human myocardium. J Cardiovasc Pharmacol 12:357–364

    Article  PubMed  Google Scholar 

  5. Böhm M, Schmitz W, Scholz H (1987) Evidence against a role of a pertussis toxin-sensitive guanine nucleotide-binding protein in the alpha1-adrenoceptor-mediated positive inotropic effect in the heart. Naunyn Schmiedebergs Arch Pharmacol 335:476–479

    Article  PubMed  Google Scholar 

  6. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson EB (1986)β 1- andβ 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptors subtypes to muscle contraction and selectiveβ 1-receptor down-regulation in heart failure. Circulation. 59:297–309

    CAS  Google Scholar 

  7. Brodde OE, Schüler S, Kretsch R, Brinkmann M, Borst HG, Hetzer R, Reidemeister C, Warnecke H, Zerkowski HR (1986) J Cardiovasc Pharmacol 8:1235–1242

    Article  PubMed  CAS  Google Scholar 

  8. Brückner R, Scholz H (1984) Effects ofα-adrenoceptor stimulation with phenylephrine in the presence of propranolol on force of contraction, slow inward current and cyclic AMP content in the bovine heart. Br J Pharmacol 82:223–232

    PubMed  Google Scholar 

  9. Brückner R, Meyer W, Mügge A, Schmitz W, Scholz H (1984)α-adrenoceptor-mediated positive inotropic effect of phenylephrine in isolated human ventricular myocardium. Eur J Pharmacol 99:345–347

    Article  PubMed  Google Scholar 

  10. Brückner R, Mügge A, Scholz H (1985) Existence and functional role of alpha1-adrenoceptors in the mammalian heart. J Mol Cell Cardiol 17:639–645

    Article  PubMed  Google Scholar 

  11. Burgess GM, Godfrey PP, McKinney JS, Berridge MJ, Irvine RF, Putney JW (1984) The second messenger linking receptor activation to internal Ca release in liver. Nature 309:63–66

    Article  PubMed  CAS  Google Scholar 

  12. Dawson AP, Irvine RF (1984) Inositol (1,4,5)-trisphosphate promoted Ca2+ release from microsomal fractions of rat liver. Biochem Biophys Res Commun 120:858–864

    Article  PubMed  CAS  Google Scholar 

  13. Endoh M, Blinks JR (1988) Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: Reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through alpha- and beta-adrenoceptors. Circ Res 62:247–265

    PubMed  CAS  Google Scholar 

  14. Fabiato A (1986) Inositol (1,4,5)-trisphosphate-induced release of Ca++ from the sarcoplasmic reticulum of skinned cardiac cells. Biophys J 49:190a

    Google Scholar 

  15. Feldmann MD, Copelas L, Gwathmey JK, Phillips P, Warren SE, Schoen FJ, Grossman W, Morgan JP (1987) Deficient production of cyclic AMP: pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure. Circulation 75:331

    Google Scholar 

  16. Freund P, Müller-Beckmann B, Strein K, Kling L, Rüegg JC (1987) Ca2+-sensitizing effect of BM 14.478 on skinned cardiac muscle fibres of guinea-pig papillary muscle. Eur J Pharmacol 136:243–246

    Article  PubMed  CAS  Google Scholar 

  17. Herzig JW, Feile K, Rüegg CJ (1981) Activating effects of AR-L 115 BS on the Ca2+ sensitive force, stiffness and unloaded shortening velocity (Vmax) in isolated contractile structures from mammalian heart muscle. Drug Res 31:188–191

    CAS  Google Scholar 

  18. Hirata M, Suematsu E, Hashimoto T, Hamachi T, Koga T (1984) Release of Ca++ from a nonmitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-trisphosphate. Biochem J 223:229–236

    PubMed  CAS  Google Scholar 

  19. Irvine RF, Moor RM (1986) Microinjection of inositol 1,3,4,5-tetrakisphosphate activates seaurchin eggs by a mechanism dependent on external Ca2+. Biochem J 240:917

    PubMed  CAS  Google Scholar 

  20. Irvine RF, Anggard EE, Letcher AJ, Downes CP (1985) Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem J 229:505–511

    PubMed  CAS  Google Scholar 

  21. Joseph SK, Thomas AP, Williams RJ, Irvine RF, Williamson JR (1984) Myo-inositol 1,4,5-trisphosphate. A second messenger for the hormonal mobilization of intracellular Ca2+ in liver. J Biol Chem 259:3077–3081

    PubMed  CAS  Google Scholar 

  22. Kohl C, Schmitz W, Scholz H, Scholz J, Tóth M, Döring V, Kalmár P (1988) Evidence for alpha1-adrenoceptor-mediated increase of inositol trisphosphate in the human heart. J Cardiovasc Pharmacol: in press

  23. Meyer W, Neumann J, Nose M, Schmitz W, Scholz H, Scholz J, Starbatty J, Steinkraus V, Döring V, Kalmár P, Rödiger W, Klöppel G, Hanrath P (1988) Inotropic response in CHF: myocarditis vs dilated cardiomyopathy. Am Heart J 115:1346–1348

    Article  PubMed  CAS  Google Scholar 

  24. Morris AP, Gallacher DV, Irvine RF, Petersen OH (1987) Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+ dependent K+ channels. Nature 330:653–655

    Article  PubMed  CAS  Google Scholar 

  25. Movsesian MA, Thomas AP, Selak M, Williamson JR (1985) Inositol trisphosphate does not release Ca2+ from permeabilized cardiac myocytes and sarcoplasmic reticulum. FEBS Lett 185:328–332

    Article  PubMed  CAS  Google Scholar 

  26. Neumann J, Schmitz W, Scholz H, von Meyerinck L, Döring V, Kalmár P (1988) Increase of myocardial Gi-proteins in human heart failure. Lancet: in press

  27. Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science (Wash. DC) 233:305–312

    Article  CAS  Google Scholar 

  28. Nosek TM, Williams MF, Zeigler ST, Godt RE (1986) Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am J Physiol 250:C807-C811

    PubMed  CAS  Google Scholar 

  29. Poggioli J, Sulpice JC, Vassort G (1986) Inositol phosphate production following alpha1-adrenergic, muscarinic or electrical stimulation in isolated rat hearts. FEBS Lett 206:292–298

    Article  PubMed  CAS  Google Scholar 

  30. Renard D, Poggioli J (1987) Does the inositol tris/tetrakisphosphate pathway exist in rat heart? FEBS Lett 217:117–123

    Article  PubMed  CAS  Google Scholar 

  31. Rüegg JC, Pfitzer G, Eubler D, Zeugner C (1984) Effect on contractility of skinned fibres from mammalian heart and smooth muscle by a new benzimidazole derivative, 4,5-dihydro-6-(2-(4-methodyphenyl)-1H-benzimidazol-5-yl)-5-methyl-3(2H)-pyridazinone. Drug Res 34:1736–1738

    Google Scholar 

  32. Scherrer NM, Ferguson JE (1985) Inositol 1,4,5-trisphosphate is not effective in releasing calcium from skeletal sarcoplasmic reticulum microsomes. Biochem Biophys Res Commun 128:1064–1070

    Article  Google Scholar 

  33. Schmitz W, Scholz H, Scholz J, Steinfarth M (1987) Increase in IP3 precedes alpha-adrenoceptor-induced increase in force of contraction in cardicac muscle. Eur J Pharmacol 140:109–111

    Article  PubMed  CAS  Google Scholar 

  34. Schmitz W, Scholz H, Scholz J, Steinfath M, Lohse M, Puurunen J, Schwabe U (1987) Pertussis toxin does not inhibit the alpha1-adrenoceptor-mediated effect on inositol phosphate production in the heart. Eur J Pharmacol 134:377–378

    Article  PubMed  CAS  Google Scholar 

  35. Schmitz W, Scholz H, Erdmann E (1987) Effects ofα andβ-adrenergic agonists, phosphodiesterase inhibitors and adenosine on isolated human heart muscle preparations. TIPS 8:447–450

    CAS  Google Scholar 

  36. Scholz H (1980) Effects of beta- and alpha-adrenoceptor activators and adrenergic transmitter releasing agents on the mechanical activity in the heart. In: Szekeres L (ed) Adrenergic activators and inhibitors, Handbook of experimental pharmacology; Springer, Heidelberg, Vol. 54/I, 651–733

    Google Scholar 

  37. Scholz J, Schaefer B, Schmitz W, Scholz H, Steinfath M, Lohse M, Schwabe U, Puurunen J (1988) Alpha1-adrenoceptor-mediated positive inotropic effect and inositol trisphosphate increase in mammalian heart. J Pharmacol Exp Ther 245:327–335

    PubMed  CAS  Google Scholar 

  38. Schümann HJ, Wagner J, Knorr A, Reidemeister JC, Sadony V, Schramm G (1978) Demonstration in human atrial preparations ofα-adrenoceptors mediating positive inotropic effects. Naunyn Schmiedebergs Arch Pharmacol 302:333–336

    Article  PubMed  Google Scholar 

  39. Streb H, Irvine RF, Berridge MJ, Schulz I: Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic cells by inositol-1,4,5-trisphosphate. Nature 306:67–69

  40. Thieleczek R, Heilmeyer LMG Jr (1986) Inositol 1,4,5-trisphosphate enhances Ca2+-sensitivity of the contractile mechanism of chemically skinned rabbit skeletal muscle fibres. Biochem Biophys Res Commun 135:662–669

    Article  PubMed  CAS  Google Scholar 

  41. Vergara J, Tsien RY, Delay M (1985) Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle. Proc Natl Acad Sci 82:6352–6356

    Article  PubMed  CAS  Google Scholar 

  42. Volpe P, Salviati G, Di Virgilio F, Pozzan T (1985) Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature 316:347–349

    Article  PubMed  CAS  Google Scholar 

  43. Woodcock EA, Schmank White LB, Smith A, Mc Leòd JK (1987) Stimulation of phosphatidylinositol metabolism in the isolated, perfused rat heart. Circ Res 61:625–631

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, W., Kohl, C., Neumann, J. et al. On the mechanism of positive inotropic effects of alpha-adrenoceptor agonists. Basic Res Cardiol 84, 23–33 (1989). https://doi.org/10.1007/BF02650344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650344

Keywords

Navigation