Skip to main content
Log in

Creep characteristics of single crystalline Ni3Al(Ta,B)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The creep characteristics, including the nature of the creep transient after a stress reduction and activation energy for creep of single crystalline Ni3Al(Ta,B) in the temperature range 1083 to 1388 K, were investigated. An inverse type of creep transient is exhibited during stress reduction tests in the creep regime where the stress exponent is equal to 3.2. The activation energy for creep in this regime is equal to 340 kJ mol−1. A normal type of creep transient is observed during stress reduction tests in the regime where the stress exponent is equal to 4.3. The activation energy for creep in this regime is equal to 530 kJ mol−1. The different transient creep behavior and activation energies for creep observed in this investigation are consistent with the previous suggestion that then = 4.3 regime is associated with creep controlled by dislocation climb, whereas then = 3.2 regime is associated with a viscous dislocation glide process for Ni3Al at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Hemker and W.D. Nix:Proc. 4th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., Institute of Metals, London, 1990,pp. 51–63.

    Google Scholar 

  2. K.J. Hemker and W.D. Nix:Metall. Trans. A, 1993, vol. 24A, pp. 335–41.

    ADS  CAS  Google Scholar 

  3. J. Wolfenstine, H.K. Kim, and J.C. Earthman:Scripta Metall. Mater., 1992, vol. 26, pp. 1823–28.

    Article  CAS  Google Scholar 

  4. J. Wolfenstine, H.K. Kim, and J.C. Earthman:J. Mater. Res., 1993, vol. 8, pp. 2510–14.

    Article  ADS  CAS  Google Scholar 

  5. R.W. Dickson, J.B. Wachtman, Jr, and S.M. Copley:J. Appl. Phys., 1969, vol. 40, pp. 2276–79.

    Article  ADS  CAS  Google Scholar 

  6. F.A. Mohamed and T.G. Langdon:Acta Metall., 1974, vol. 22, pp. 779–88.

    Article  CAS  Google Scholar 

  7. S. Takeuchi and A.S. Argon:J. Mater. Sci., 1976, vol. 11, pp. 1542–66.

    Article  CAS  Google Scholar 

  8. M.S. Soliman and F.A. Mohamed:Metall. Trans. A, 1984, vol. 15A, pp. 1893–1904.

    ADS  CAS  Google Scholar 

  9. T.T. Fang, R. Rao Kola, and K.L. Murty:Metall. Trans. A, 1986, vol. 17A, pp. 1447–53.

    ADS  CAS  Google Scholar 

  10. O.D. Sherby and P.M. Burke:Prog. Mater. Sci, 1967, vol. 13, pp. 325–90.

    Google Scholar 

  11. H. Oikawa, K. Sugawara, and S. Karashima:Mater. Trans. JIM, 1978, vol. 19, pp. 611–16.

    CAS  Google Scholar 

  12. J. Cadek:Creep in Metallic Materials, Elsevier, New York, NY,1988, pp. 115–74.

    Google Scholar 

  13. P.A. Flinn:Trans. AIME, 1960, vol. 218, pp. 145–54.

    CAS  Google Scholar 

  14. J.R. Nicholls and R.D. Rawlings:J. Mater. Sci., 1977, vol. 12, pp. 2456–64.

    Article  CAS  Google Scholar 

  15. M.V. Nathal, J.O. Diaz, and R.V. Miner:MRS Symp. Proc, 1989, vol. 133, pp. 269–74.

    Google Scholar 

  16. H.S. Yang, P. Jin, and A.K. Mukherjee:Mater. Trans. JIM, 1992, vol. 33, pp. 38–44.

    CAS  Google Scholar 

  17. G.F. Hancock:Phys. Status Solidi A, 1971, vol. 7, pp. 535–40.

    Article  CAS  Google Scholar 

  18. K. Hoshino, S.J. Rothman, and R.S. Averback:Acta Metall., 1988, vol. 36, pp. 267–81.

    Article  Google Scholar 

  19. M.B. Bronfin, G.S. Bulatov, and I.A. Drugova:Fiz. Metall., 1975, vol. 40, pp. 363–66.

    CAS  Google Scholar 

  20. T.C. Chou and Y.T. Chou:MRS Symp. Proc, 1985, vol. 39, pp. 461–67.

    CAS  Google Scholar 

  21. O.D. Sherby and M.T. Simnad:Trans. ASM, 1961, vol. 54, pp. 227–40.

    CAS  Google Scholar 

  22. A.M. Brown and M.F. Ashby:Acta Metall., 1980, vol. 28, pp. 1085–1101.

    Article  CAS  Google Scholar 

  23. J.R. Cahoon and O.D. Sherby:Metall. Trans. A, 1992, vol. 23A, pp. 2491–2500.

    ADS  CAS  Google Scholar 

  24. M. Kiowa:Ordered Intermetallics—Physical and Mechanical Behavior, C.T. Liu, R.W. Cahn, and G. Sauthoff, eds., Kluwer Academic, Boston, MA, 1991, vol. 213, pp. 449–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfenstine, J., Kim, H.K. & Earthman, J.C. Creep characteristics of single crystalline Ni3Al(Ta,B). Metall Mater Trans A 25, 2477–2482 (1994). https://doi.org/10.1007/BF02648866

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648866

Keywords

Navigation