Skip to main content
Log in

Measurement of Structural Parameters Important in Creep of Ni-Mo and Ni-W Solid Solutions

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

To describe effectively the creep behavior of concentrated solid solutions in the diffusion-controlled power law regime in terms of dislocation climb and viscous glide mechanisms, values of key structural and physical properties are needed. The constitutive relations for these mechanisms reveal important contributions from elastic moduli and the appropriate diffusivities to the steady-state creep rate. Empirical modifications of these formulations further suggest the need for structural parameter values, such as the stacking fault energies, short range order coefficients, and atomic size differences, of the alloy systems of interest. The objective of this research is to characterize the Ni-Mo and Ni-W terminal solid solutions in terms of the above parameters and to define and interpret the calculated steady-state creep rates for both climb and viscous glide as a function of solute content. The calculated creep rates for the Ni-W system are lower than those for the Ni-Mo system for both mechanisms due to the higher moduli and atomic size factor, and lower diffusivities of the former. The short range order contribution to the viscous glide parameters of the Ni-Mo system is the largest observed in such analyses to date (up to 12 pct). Reasons for the marked slope differences between the Ni-Mo climb and glide solute dependencies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Cannon and O. D. Sherby:Metall. Trans., 1970, vol. 1, pp. 1030–32.

    CAS  Google Scholar 

  2. O.D. Sherby and P. Burke:Prog. in Mater. Sci., 1968, vol. 13, pp. 325–89.

    Google Scholar 

  3. J.E. Bird, A. Mukhergee, and J. E. Dorn:Trans. ASM, 1969, vol. 62, pp. 155–77.

    Google Scholar 

  4. AH. Cottrell and R. W. Jaswon:Proc. Royal Soc., 1949, vol. A199, pp. 104–14.

    CAS  Google Scholar 

  5. H. Suzuki:Sci. Rep. Research Inst. Tohoku Univ., 1952, vol. A4, pp. 455–63.

    Google Scholar 

  6. J. Fisher:Acta Met., 1954, vol. 2, pp. 9–10.

    Article  Google Scholar 

  7. F. A. Mohamed and T. G. Langdon:Acta Met., 1974, vol. 22, pp. 779–88.

    Article  CAS  Google Scholar 

  8. C. M. Seliars and A. G. Quarrell.J. Inst. Metals, 1961-62, vol. 90, pp. 329–36.

    Google Scholar 

  9. P.A. Flinn:Acta Met., 1958, vol. 6, pp. 631–35.

    Article  CAS  Google Scholar 

  10. H.W. King:J. Mat. Sci., 1966, vol. 1, pp. 79–90.

    Article  CAS  Google Scholar 

  11. R. M. N. Pelloux and N. J. Grant:Trans. TMS-AIME, 1960, vol. 218, p. 232.

    CAS  Google Scholar 

  12. W. R. Johnson, C.R. Barrett, and W. D. Nix:Metall. Trans., 1972, vol. 3, pp. 963–69.

    Article  CAS  Google Scholar 

  13. Y. Nakada and T. C. Tisone:2nd Inter. Conf. Strength of Metals and Alloys, ASM, Metals Park, OH, 1970, vol. 1, pp. 288–93.

    Google Scholar 

  14. L. Delehouzee and A. Deruyttere:Acta Met., 1967, vol. 15, pp. 727–34.

    Article  CAS  Google Scholar 

  15. J.E. Spruiell and E. E. Stansbury:J. Phys. Chem. Solids, 1965, vol. 26, pp. 811–22.

    Article  CAS  Google Scholar 

  16. A.M. Ammons and J.E. Spruiell:J. Appl. Phys., 1968, vol. 39, pp. 3682–89.

    Article  CAS  Google Scholar 

  17. A. A. Katsnelson, Sh. A. Alimov, P. Sh. Dazhayev, V. M. Silonev, and N. N. Stupina:Phys. Met. Metallog., 1968, vol. 26, pp. 26–35.

    Google Scholar 

  18. V. I. Kirienko and L. P. Potopov:Phys. Met. Metallog., 1973, vol. 36, pp. 181–84.

    Google Scholar 

  19. B.G. LeFevre, A.G. Guy, and R.W. Gould:Trans. TMS-AIME, 1968, vol. 242, pp. 788–95.

    CAS  Google Scholar 

  20. G.M. McManus:J. Appl. Phys., 1965, vol. 36, pp. 3631–33.

    Article  CAS  Google Scholar 

  21. W. C. Harrigan and W. D. Nix:Trans. TMS-AIME, 1968, vol. 242, pp. 2491–94.

    CAS  Google Scholar 

  22. R. E. W. Casselton and W. Hume-Rothery:J. Less Common Metals, 1964, vol. 7, pp. 212–21.

    Article  CAS  Google Scholar 

  23. M. Hansen:Constitution of Binary Alloys, 2nd ed., McGraw-Hill Book Co., New York, NY, 1958, p. 1058.

    Google Scholar 

  24. H.G. Baer:Z. Metallkunde, 1965, vol. 56, pp. 79–84.

    CAS  Google Scholar 

  25. G. Okamoto and G. Thomas:Mat. Res. Bull., 1971, vol. 6, pp.45–49.

    Article  CAS  Google Scholar 

  26. L. C. Lynnworth:J. Testing and Evaluation, 1973, vol. l, pp. 119–25.

    Google Scholar 

  27. R. Lowrie and A.M. Gonas:J. Appl. Physics, 1965, vol. 36, pp. 2189–92.

    Article  CAS  Google Scholar 

  28. C. J. Smithells:Metals Reference Book, 5th edition, Butterworths and Co., London, 1976, pp. 975–76.

    Google Scholar 

  29. P. E. Armstrong and H. L. Brown:Trans. TMS-AIME, 1964, vol. 230, pp. 962–66.

    CAS  Google Scholar 

  30. D. J. H. Cockayne, I. L. F. Ray, and M. J. Whelan:Phil. Mag., 1969, vol. 20, pp. 1265–70.

    CAS  Google Scholar 

  31. D.J.H. Cockayne:Jour. of Microscopy, 1978, vol. 98, pt. 2, pp. 116–34.

    Google Scholar 

  32. L. E. Murr:Electron Optical Applications in Materials Science, McGraw-Hill Book Co., New York, NY, 1970, p. 383.

    Google Scholar 

  33. J. P. Hirth and J. Lothe:Theory of Dislocations, McGraw-Hill, New York, NY, 1968, pp. 432–35.

    Google Scholar 

  34. B.E. Warren and B.L. Averbach:Modern Research Techniques in Physical Metallurgy, ASM, Metals Park, OH, 1952, pp. 95–129.

    Google Scholar 

  35. G. Van Tendeloo:Mat. Sci. and Eng., 1976, vol. 26, pp. 209–20.

    Article  Google Scholar 

  36. J.P. Chevalier and W. M. Stobbs:Acta Met., 1979, vol. 27, pp. 1197–1217.

    Article  CAS  Google Scholar 

  37. C.J. Sparks and B. Borie:Local Atomic Arrangements Studied by X-Ray Diffraction, Gordon and Breach, New York, NY, 1966, pp. 5–36.

    Google Scholar 

  38. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, England, 1962 and 1974, vols. 3 and 4, pp. 79-91 and 148-51, 264.

  39. . K. Sagel:Tabellen zur Rontgenstructuranalyze, Springer Verlag, Berlin, 1958, pp. 121–22, 155-69.

    Google Scholar 

  40. V. Pimenov and Yu. Ugaste:Phys. Met. Metallog., 1972, vol. 33, pp. 125–30.

    Google Scholar 

  41. V. Pimenov and Yu Ugaste:Phys. Met. Metallog., 1973, vol. 35, pp. 134–39.

    Google Scholar 

  42. L. L. Meshkov, L. S. Guzey, V. A. Kazakov, and E. M. Sokolovskaya:Moscow Univ. Chem. Bull., 1972, vol. 27, pp. 83–84.

    Google Scholar 

  43. I. Katayama, H. Shimatani, and Z. Kozuka:J. Japan Inst. Metals, 1973, vol. 37, p. 513.

    Google Scholar 

  44. L. L. Meshkov, L. S. Guzey, and E. M. Sokolovskaya:Russ. J. Phys. Chem., 1975, vol. 49, pp. 1128–29.

    Google Scholar 

  45. K. Monma, H. Suto, and H. Oikawa:J. Japan Inst. Metals, 1964, vol. 28, pp. 197–200.

    Google Scholar 

  46. D. F. Kalinovich, I. I. Kovenskii, M. D. Smolin, and V. M. Statsenko:Fiz. Khim, Metch. Mater., 1970, vol. 6, p. 104.

    CAS  Google Scholar 

  47. C.S. Hartley:Acta Met., 1966, vol. 14, p. 1133.

    Article  CAS  Google Scholar 

  48. R. Farraro and R. B. McLellan:Metall. Trans. A, 1977, vol. 8A, pp. 1563–65.

    CAS  Google Scholar 

  49. R. DeRidder, G. Van Tendeloo, and S. Amelinckx:Acta Cryst., 1976, vol. A32, p. 216.

    Google Scholar 

  50. J. Weertman:Trans. TMS-AIME, 1960, vol. 218, p. 208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiearney, T.C., Grant, N.J. Measurement of Structural Parameters Important in Creep of Ni-Mo and Ni-W Solid Solutions. Metall Trans A 13, 1827–1836 (1982). https://doi.org/10.1007/BF02647839

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647839

Keywords

Navigation