Skip to main content
Log in

Intrinsic glycosylation potentials of insect cell cultures and insect larvae

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The glycosylation and subsequent processing of native and recombinant glycoproteins expressed in established insect cell lines and insect larvae were compared. TheSpodoptera frugiperda (Sf21) andTrichoplusia ni (TN-368 and BTI-Tn-5B1-4) cell lines possessed several intrinsic glycoproteins that are modified with both N- and O-linked oligosaccharides. The N-linked oligosaccharides were identified as both the simple (high mannose) and complex (containing sialic acid) types. Similarly, theT. ni larvae also possessed intrinsic glycoproteins that were modified with O-linked and simple and complex N-linked oligosaccharides. Additionally, human placental, secreted alkaline phosphatase (SEAP) produced during replication of a recombinant baculovirus inT. ni larvae was modified with complex oligosaccharide having sialic acid linked α(2–6) to galactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, R. A.; Owens, C. D.; Shapiro, M., et al. Mass rearing and virus production. In: Doane, C. C.; McManus, M. L., eds. The gypsy moth: Research toward integrated pest management. Forest Serv. Tech. Bull. 1584; 1981:599–655.

  • Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, D. J.; Bretthauer, R. K.; Castellino, F. J. α-Mannosidase-catalyzed trimming of high-mannose glycans in noninfected and baculovirus-infectedSpodoptera frugiperda cells (IPLB-SF-21AE). A possible contributing regulatory mechanism for assembly of complex-type oligosaccharides in infected cells. Biochemistry 30:9811–9815; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, D. J.; Castellino, F. J. Structures of the asparagine-289-linked oligosaccharides assembled on recombinant human plasminogen expressed in aMamestra brassicae cell line (IZD-MB0503). Biochemistry 30:6689–6696; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, D. J.; Fraser, M. J.; Castellino, F. J. Oligosaccharide processing in the expression of human plasminogen cDNA by lepidopteran insect (Spodoptera frugiperda) cells. Biochemistry 29:5584–5590; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Davis, T. R.; Shuler, M. L.; Granados, R. R., et al. Comparison of oligosaccharide processing among various insect cell lines expressing a secreted glycoprotein. In Vitro Cell. Dev. Biol. 29A:842–846; 1993.

    CAS  Google Scholar 

  • Davis, T. R.; Trotter, K. M.; Granados, R. R., et al. Baculovirus expression of alkaline phosphatase as a reporter gene for evaluation of production, glycosylation and secretion. Bio-Technology 10:1148–1150; 1992.

    PubMed  CAS  Google Scholar 

  • Geisow, M. J. Glycoprotein glycans—roles and controls. TIBTECH 10:333–335; 1992.

    CAS  Google Scholar 

  • Granados, R. R.; Guoxun, L.; Derksen, A. C. G., et al. A new insect cell line fromTrichoplusia ni (BTI-Tn-5B1-4) susceptible toTrichoplusia ni single enveloped nuclear polyhedrosis virus. J. Invertebr. Pathol. 64:260–266; 1994.

    Article  Google Scholar 

  • Gunne, H.; Steiner, H. Efficient secretion of attacin from insect fat-body cells requires proper processing of the prosequence. Eur. J. Biochem. 214:287–293; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hellers, M.; Gunne, H.; Steiner, H. Expression and post-translational processing of preprocecropin A using a baculovirus vector. Eur. J. Biochem. 199:435–439; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Hink, W. F. Established insect cell line from the cabbage looper,Trichoplusia ni. Nature 266:466–467; 1970.

    Article  Google Scholar 

  • Hotchkiss, A.; Refino, C. J.; Leanardi, C. K., et al. The influence of carbohydrate structure on the clearance of recombinant tissue-type plasminogen activator. Thromb. Haemostatis 57:356–360; 1988.

    Google Scholar 

  • Howard, S. C.; Wittwer, A. J.; Welply, J. K. Oligosaccharides at each glycosylation site make structure-dependent contributions to biological properties of human tissue plasminogen activator. Glycobiology 1:411–417; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, P. R.; van Beek, N. A. M.; Wood, H. A. A modified droplet feeding method for rapid assay ofBacillus thuringiensis and baculoviruses in Noctuid larvae. J. Invertebr. Pathol. 48:187–192; 1986.

    Article  Google Scholar 

  • Jarvis, D. L.; Oker-Blom, C.; Summers, M. D. Role of glycosylation in the transport of recombinant glycoproteins through the secretory pathway of lepidopteran insect cells. J. Cell. Biochem. 42:181–191; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Kubelka, V.; Altmann, F.; Kornfeld, G., et al. Structures of the N-linked oligosaccharides of the membrane glycoproteins from three lepidopteran cell lines (Sf-21, IZD-Mb-0503, Bm-N). Arch. Biochem. Biophys. 308:148–157; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda, K.; Geyer, H.; Geyer, R., et al. The oligosaccharides of influenza virus hemagglutinin expressed in insect cells by a baculovirus vector. Virology 174:418–429; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Licari, P. J.; Jarvis, D. L.; Bailey, J. E. Insect cell hosts for baculovirus expression vectors contain endogenous exoglycosidase activity. Biotechnol. Prog. 9:146–152; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Luckow, V. A. Cloning and expression of heterologous genes in insect cells with baculovirus vectors. In: Ho, C. S.; Prokop, A.; Bajpai, R. K., eds. Recombinant DNA technology and applications. New York:McGraw-Hill; 1991:97–152.

    Google Scholar 

  • Roth, J.; Kempf, A.; Reuter, G., et al. Occurrence of sialic acids inDrosophila melanogaster. Science 256:673–675; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Sridhar, P.; Panda, A. K.; Pal, R., et al. Temporal nature of the promoter and not relative strength determines the expression of an extensively processed protein in a baculovirus system. FEBS Lett. 315:282–286; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, H.; Pohl, G.; Gunne, H., et al. Human tissue-type plasminogen activator synthesized by using a baculovirus vector in insect cells compared with human plasminogen activator produced in mouse cells. Gene 73:449–457; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Vaughn, J. L.; Goodwin, R. H.; Tompkins, G. J., et al. The establishment of two cell lines form the insectSpodoptera frugiperda (Lepidoptera:Noctuidae). In Vitro 13:213–217; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Velardo, M. A.; Bretthauer, R. K.; Boutaud, A., et al. The presence of UDPN-acetylglucosamine:α-3-D-mannoside β1,2-N-acetylglucosaminyl-transferase I activity inSpodoptera frugiperda cells (IPLB-SF-21AE) and its enhancement as a result of baculovirus infection. J. Biol. Chem. 268:17902–17907; 1993.

    PubMed  CAS  Google Scholar 

  • Vialard, J.; Lalumière, M.; Vernet, T., et al. Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the β-galactosidase gene. J. Virol. 64:37–50; 1990.

    PubMed  CAS  Google Scholar 

  • Vissavajjhala, P.; Ross, A. H. Purification and characterization of the recombinant domain of human nerve growth factor receptor expressed in a baculovirus system. J. Biol. Chem. 265:4746–4752; 1990.

    PubMed  CAS  Google Scholar 

  • Warner, T. G.; Louie, A.; Potier, M. Photolabeling of the α-neuraminidase/β-galactosidase complex from human placenta with a photoreactive neuraminidase inhibitor. Biochem. Biophys. Res. Commun. 173:13–19; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Wathen, M. W.; Aeed, P. A.; Elhammer, A. P. Characterization of oligosaccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9. Biochemistry 30:2863–2868; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Wood, H. A. Isolation and replication of an occlusion-deficient mutant of the Autographa californica nuclear polyhedrosis virus. Virology 105:338–344; 1980.

    Article  CAS  Google Scholar 

  • Wood, H. A.; Munkenbeck-Trotter, K.; Davis, T. R., et al.Per os larval bioassays with polyhedrin-minus recombinant baculovirus. J. Invertebr. Pathol. 62:64–67; 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, T.R., Wood, H.A. Intrinsic glycosylation potentials of insect cell cultures and insect larvae. In Vitro Cell Dev Biol - Animal 31, 659–663 (1995). https://doi.org/10.1007/BF02634086

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634086

Key words

Navigation