Skip to main content
Log in

A digitized fluorescence imaging study of intracellular Ca2+, pH, and mitochondrial function in primary cultures of rabbit corneal epithelial cells exposed to sodium dodecyl sulfate

  • Cellular And Molecular Toxicology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Primary cultures of rabbit corneal epithelial cells have been developed as an in vitro system to predict irritancy potential and delayed cytotoxicity of surfactants in our laboratory. The objective of this study was to evaluate the effects of the surfactant sodium dodecyl sulfate (SDS), a common ingredient in consumer products, on intracellular Ca2+, pH, and mitochondrial function in this culture system. Ca2+ and pH were measured in single living corneal epithelial cells by ratio imaging of fura-2 and 2,′7′-bis(carboxyethyl)-5(6)-carboxyfluorescein fluorescence, respectively. Mitochondrial function was examined by probing mitochondrial membrane potential with the fluorescent dye rhodamine 123 and by measuring the ratio of ATP to ADP with an HPLC method. Cell viability was determined by fluorescence imaging of propidium iodide in single cells and LDH leakage assay in populations of cells. SDS (40 µg/ml) increased intracellular Ca2+ from 180±28nM to 453±86 nM within 2 min, and induced intracellular acidification (pHi dropped 0.3 units in 15 min). Treatment of the cultures with SDS also resulted in dissipation of the mitochondrial membrane potential and decrease of intracellular ATP/ADP. SDS-induced Ca2+ elevation and intracellular acidification preceded the loss of cell viability observed 20 min after exposure. However, SDS-induced cell injury does not appear to be triggered by extracellular Ca2+-influx, as absence of extracellular Ca2+ did not attenuate SDS-induced cytotoxicity while it completely blocked ionomycin-induced cytotoxicity. In summary, we observed a series of intracellular events that occurred temporally after exposure to the surfactant: elevation of intracellular Ca2+ and intracellular acidification, dissipation of mitochondrial membrane potential, decrease of ATP/ADP ratio, and subsequent cell injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, D.; Sorensen, E. M. B.; Anuforo, D. C., et al. An in vitro approach to the study of target organ toxicity of drugs and chemicals. In Vitro Cell. Dev. Biol. 21:495–504; 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, S. E.; Murphy, E.; Steenbergen, C., et al. Na+/H+ exchange in myocardium: effects of hypoxia and acidification on Na+ and Ca2+. Am. J. Physiol. 259:C940–948; 1990.

    PubMed  CAS  Google Scholar 

  3. Aronson, P. Kinetic properties of the plasma membrane Na-H exchanger. Annu. Rev. Physiol. 47:545–560; 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Barry, M. A.; Eastman, A. Endonuclease activation during apoptosis: the role of cytosolic Ca2+ and pH. Biochem. Biophys. Res. Commun. 186:782–789; 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Bartnik, F. G. Interaction of anionic surfactants with proteins, enzymes, and membranes. In: Gloxhuber, C.; Kunstler, K., eds. Anionic surfactants, biochemistry, toxicology, dermatology. Surfactant Science Series Vol. 43. New York: Marcel Dekker; 1992:1–42.

    Google Scholar 

  6. Bellomo, G.; Fulceri, R.; Albano, E., et al. Ca2+-dependent and independent mitochondrial damage in hepatocellular injury. Cell Calcium 12:335–341; 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Bruner, L. H. Ocular irritation. In: Frazier, J. M., ed. In vitro toxicology testing. New York: Marcel Dekker; 1992:149–191.

    Google Scholar 

  8. Burns, K. D.; Homma, T.; Breyer, M. D., et al. Cytosolic acidification stimulates a calcium influx that activates Na+-H+ exchange in LLC-PK1. Am. J. Physiol. 261:F617-F625; 1991.

    PubMed  CAS  Google Scholar 

  9. Chacon, E.; Acosta, D. Mitochondrial regulation of superoxide by Ca2+: an alternate mechanism for cardiotoxicity of doxorubicin therapy. Toxicol. Appl. Pharmacol. 107:117–128; 1991.

    Article  PubMed  CAS  Google Scholar 

  10. Chacon, E.; Ulrich, R.; Acosta, D. A digitized fluorescence imaging study of mitochondrial calcium increase by doxorubicin in cardiac myocytes. Biochem. J. 281:871–878; 1992.

    PubMed  CAS  Google Scholar 

  11. Chen, L. B. Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 4:155–181; 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Cheung, J. Y.; Bonventre, J. V.; Malis, C. D., et al. Calcium and ischemic injury. N. Engl. J. Med. 314:1670–1676; 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Draize, J. H.; Woodard, G.; Calvery, H. O. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther. 82:377–390; 1944.

    CAS  Google Scholar 

  14. Grant, R. L.; Acosta, D. A digitized fluorescence imaging study of the effects of local anesthetics on cytosolic calcium and mitochondrial membrane potential in cultured rabbit corneal epithelial cells. Toxicol. Appl. Pharmacol. 129:23–35; 1994a.

    Article  PubMed  CAS  Google Scholar 

  15. Grant, R. L.; Acosta, D. Comparative toxicity of tetracaine, proparacaine and cocaine evaluated with primary cultures of rabbit corneal epithelial cells. Exp. Eye Res. 58:469–478; 1994b.

    Article  PubMed  CAS  Google Scholar 

  16. Grant, R. L.; Yao, C.; Gabaldon, D., et al. Evaluation of surfactant cytotoxicity potential by primary cultures of ocular tissues: I. Characterization of rabbit corneal epithelial cells and initial injury and delayed toxicity studies. Toxicology 76:153–176; 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Grynkiewicz, G. M.; Poenie, M.; Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450; 1985.

    PubMed  CAS  Google Scholar 

  18. Jiang, T.; Grant, R. L.; Acosta, D. A digitized fluorescence imaging study of intracellular free calcium, mitochondrial integrity and cytotoxicity in rat renal cells exposed to ionomycin, a calcium ionophore. Toxicology 85:41–65; 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Lea, T. J.; Ashley, C. C. Increase in free Ca2+ in muscle after exposure to CO2. Nature 275:236–238; 1978.

    Article  PubMed  CAS  Google Scholar 

  20. Lemasters, J. J.; DiGiuseppi, J.; Nieminen, A. L., et al. Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature 325:78–81; 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Masaki, N.; Kyle, M. E.; Seroni, A., et al. Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl-hydroperoxide. Arch. Biochem. Biophys. 270:672–680; 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Mehlhorn, R. J.; Packer, L. Inactivation and reactivation of mitochondrial respiration by charged detergents. Biochim. Biophys. Acta 423:382–397; 1976.

    Article  PubMed  CAS  Google Scholar 

  23. Mitchell, D. B.; Santone, K. S.; Acosta, D. Evaluation of cytotoxicity in cultured cells by enzyme leakage. J. Tissue Cult. Methods 6:113–116; 1980.

    Article  CAS  Google Scholar 

  24. Nicotera, P.; Bellomo, G.; Orrenius, S. Calcium-mediated mechanisms in chemically induced cell death. Annu. Rev. Pharmacol. Toxicol. 32:449–470; 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Poenie, M. Measurement of intracellular calcium with fluorescent calcium indicators. In: Boulton, A. A.; Baker, G. B.; Taylor, C. W., eds. Neuromethods Vol. 20: Intracellular messengers. Totowa, NJ: Humana Press; 1992:1–39.

    Google Scholar 

  26. Richelmi, P.; Mirabeli, F.; Salis, A. et al. On the role of mitochondria in cell injury caused by vanadate-induced Ca2+ overload. Toxicology 57:29–44; 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Rink, T. J.; Tsien, R. Y.; Pozzan, T. Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol. 95:189–196; 1982.

    Article  PubMed  CAS  Google Scholar 

  28. Rohde, B. H. In vitro methods in ophthalmic toxicology. In: Chiou, G. C. Y., ed. Ophthalmic toxicology. New York: Raven Press; 1992:109–129.

    Google Scholar 

  29. Roos, A.; Boron, W. F. Intracellular pH. Physiol. Rev. 61(2):297–320; 1981.

    Google Scholar 

  30. Schanne, F. A. X.; Kane, A. B.; Young, E. E., et al. Calcium dependence of toxic cell death: a final common pathway. Science 206:700–702; 1979.

    Article  PubMed  CAS  Google Scholar 

  31. Sellevold, O. F. M.; Jynge, P.; Arstad, K. Higher performance liquid chromatography: a rapid isocratic method for determination of creatine compounds and adenine nuleotides in myocardial tissue. J. Mol. Cell. Cardiol. 18:517–527; 1986.

    Article  PubMed  CAS  Google Scholar 

  32. Thomas, J. A.; Buchsbaum, R. N.; Zimniak, A., et al. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218; 1979.

    Article  PubMed  CAS  Google Scholar 

  33. Yang, W.; Acosta, D. Cytotoxicity of surfactant mixtures evaluated by primary cultures of rabbit corneal epithelial cells. Toxicol. Lett. 70:309–318; 1994.

    Article  PubMed  CAS  Google Scholar 

  34. Yao, C.; Acosta, D. Surfactant cytotoxicity potential evaluated with primary cultures of ocular tissues: a method for the culture of rabbit conjunctival epithelial cells and initial cytotoxicity studies. Toxicol. Meth. 2:199–218; 1992.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Acosta, D. A digitized fluorescence imaging study of intracellular Ca2+, pH, and mitochondrial function in primary cultures of rabbit corneal epithelial cells exposed to sodium dodecyl sulfate. In Vitro Cell Dev Biol - Animal 31, 499–507 (1995). https://doi.org/10.1007/BF02634027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634027

Key words

Navigation