Skip to main content
Log in

Comparison of oligosaccharide processing among various insect cell lines expressing a secreted glycoprotein

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The processing of the N-linked oligosaccharide modifying a secreted alkaline phosphatase glycoprotein (SEAP) expressed with a recombinantAutographa californica nuclear polyhedrosis virus was evaluated in insect cell lines established fromSpodoptera frugiperda, Trichoplusia ni, andMamestra brassicae. Studies with Endoglycosidase H (Endo H), which removes high-mannose oligosaccharides, revealed that 79% of the intracellular SEAP produced in theM. brassicae-derived MB0503 cell line was Endo H resistant. The commonly usedS. frugiperda Sf21 and Sf9 cell lines produced 44 and 21% Endo H-resistant intracellular SEAP, respectively. Detection of oligosaccharide moieties with lectins, which selectively recognize terminal sugars, identified only mannose residues on SEAP expressed in the six insect cell lines. However, the oligosaccharide moiety of SEAP expressed in a Chinese hamster ovary cell line contained sialic acid. Therefore, when expressed in mammalian cells, the oligosaccharide present on SEAP is processed into complex oligosaccharide, but in insect cells it is of the high-mannose type. Studies with inhibitors of the initial oligosaccharide processing steps demonstrated that all six cell lines possessed glycosidase I/II and mannosidase I activity and that glycosylation was required for secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, J.; Hauber, J.; Hauber, R., et al. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66:1–10; 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Davidson, D. J.; Castellino, F. J. Asparagine-linked oligosaccharide processing in lepidopteran insect cells. Temporal dependence of the nature of the oligosaccharides assembled on asparagine-289 of recombinant human plasminogen produced in baculovirus vector infectedSpodoptera frugiperda (IPLB-SF-21AE) cells. Biochemistry 30:6167–6174; 1991.

    Article  CAS  Google Scholar 

  3. Davis, T. R.; Trotter, K. M.; Granados, R. R., et al. Baculovirus expression of alkaline phosphatase as a reporter gene for evaluation of production, glycosylation and secretion. Bio/Technology 10:1148–1150; 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Davis, T. R.; Wickham, T. J.; McKenna, K. A., et al. Comparative recombinant protein production of eight insect cell lines. In Vitro Cell. Dev. Biol. 29A:388–390; 1993.

    CAS  Google Scholar 

  5. Fienup, V. K.; Jeng, M.; Hamilton, R. T., et al. Relationship between the regulation of DNA synthesis and the production of two secreted glycoproteins by 12-O-tetradecanoylphorbol-13-acetate in 3T3 cells and in phorbol ester nonresponsive 3T3 variants. J. Cell. Physiol. 129:151–158; 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Hink, W. F. Established insect cell line from the cabbage looper,Trichoplusia ni. Nature 266:466–467; 1970.

    Article  Google Scholar 

  7. Jarvis, D. L.; Oker-Blom, C.; Summers, M. D. Role of glycosylation in the transport of recombinant glycoproteins through the secretory pathway of lepidopteran insect cells. J. Cell. Biochem. 42:181–191; 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Kuroda, K.; Geyer, H.; Geyer, R., et al. The oligosaccharides of influenza virus hemagglutinin expressed in insect cells by a baculovirus vector. Virology 174:418–429; 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Kornfeld, R.; Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54:631–664; 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Luckow, V. A. Cloning and expression of heterologous genes in insect cells with baculovirus vectors. In: Ho, C. S.; Prokop, A.; Bajpai, R. K., eds. Recombinant DNA technology and applications. New York: McGraw-Hill; 1991.

    Google Scholar 

  11. Millán, J. L. Molecular cloning and sequence analysis of human placental alkaline phosphatase. J. Biol. Chem. 261:3112–3115; 1986.

    PubMed  Google Scholar 

  12. Miltenburger, H. G.; David, P.; Wulf, H. Proceedings of the 1st international colloquium of invertebrate pathology. Kingston, Ontario: Queen’s University; 1976:393–394.

    Google Scholar 

  13. Parekh, R. B.; Dwek, R. A.; Edge, C. J., et al. N-glycosylation and the production of recombinant glycoproteins. Trends Biotechnol. 7:117–122; 1989.

    Article  CAS  Google Scholar 

  14. Parekh, R. B.; Dwek, R. A.; Thomas, J. R., et al. Cell-type specific and site-specific N-glycosylation of type I and type II human tissue plasminogen activator. Biochemistry 28:7644–7662; 1989.

    Article  PubMed  CAS  Google Scholar 

  15. Steiner, H.; Pohl, G.; Gunne, H., et al. Human tissue-type plasminogen activator synthesized by using a baculovirus vector in insect cells compared with human plasminogen activator produced in mouse cells. Gene 73:449–457; 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Summers, M. D.; Smith, G. A. A manual of methods for baculovirus vectors and insect cell culture procedures. Tex. Agric. Exp. Stn. Bull. B1555:1–56; 1987.

    Google Scholar 

  17. Swedlow, J. R.; Matteri, R. L.; Papkoff, H. Deglycosylation of gonadotropins with an endoglycosidase. Proc. Soc. Exp. Biol. Med. 181:432–437; 1986.

    PubMed  CAS  Google Scholar 

  18. Vaughn, J. L.; Goodwin, R. H.; Tompkins, G. J., et al. The establishment of two cell lines from the insectSpodoptera frugiperda (Lepidoptera:Noctuidae). In Vitro 13:213–217; 1977.

    Article  PubMed  CAS  Google Scholar 

  19. Vialard, J.; Lalumière, M.; Vernet, T., et al. Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the β-galactosidase gene. J. Virol. 64:37–50; 1990.

    PubMed  CAS  Google Scholar 

  20. Vissavajjhala, P.; Ross, A. H. Purification and characterization of the recombinant domain of human nerve growth factor receptor expressed in a baculovirus system. J. Biol. Chem. 265:4746–4752; 1990.

    PubMed  CAS  Google Scholar 

  21. Wathen, M. W.; Aeed, P. A.; Elhammer, A. P. Characterization of oligosaccharide structures on a chimeric respiratory syncytical virus protein expressed in insect cell line Sf9. Biochemistry 30:2863–2868; 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Wickham, T. J.; Davis, T.; Granados, R. R., et al. Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol. Prog. 8:391–396; 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Wittwer, A. J.; Howard, S. C.; Carr, L. S., et al. Effects of N-glycosylation onin vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen activator. Biochemistry 28:7662–7669; 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Wood, H. A. Isolation and replication of an occlusion-deficient mutant of theAutographa californica nuclear polyhedrosis virus. Virology 105:338–344; 1980.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, T.R., Shuler, M.L., Granados, R.R. et al. Comparison of oligosaccharide processing among various insect cell lines expressing a secreted glycoprotein. In Vitro Cell Dev Biol - Animal 29, 842–846 (1993). https://doi.org/10.1007/BF02631361

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631361

Key words

Navigation