Skip to main content
Log in

Action of ornithine α ketoglutarate on DNA synthesis by human fibroblasts

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Ornithine α ketoglutarate (OKG) is largely used in clinical nutrition for its anabolic effects. However, the mechanism of its action remains questionable. We investigated the effect of OKG on the rate of DNA synthesis in human fibroblasts. The in vitro experimental procedure required to demonstrate in cell culture the anabolic effects of OKG observed in vivo was found to be glutamine-free and serum-poor medium with sparse cells. In these conditions, OKG induced a significant increase in [3H]thymidine incorporation compared to untreated control cells. This effect was dose-dependent and was observed in all the cultures tested. Taken individually, the two constituents of OKG, i.e. αKG and Orn, also showed a stimulatory effect, but did not demonstrate a dose-dependent response. Concomitant analysis of extracellular aminoacids showed in αKG-treated cultures an increase in glutamate and a decrease in aspartate, suggesting a cellular transamination of αKG. Glutamine, which is the preferential energetic substrate of fibroblasts, can be produced from glutamate and might play a role in the action of OKG. Moreover, OKG induced a rise in the cellular polyamine content. This, in association with the inhibitory effect on OKG action of difluoromethylornithine, a specific inhibitor of ornithine decarboxylase, suggests a link between the polyamine biosynthesis pathway and the anabolic effect of OKG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albina, J. E.; Mills, C. D.; Barbul, A., et al. Arginine metabolism in wounds. Am. J. Physiol. 254:E459-E467; 1988.

    PubMed  CAS  Google Scholar 

  2. Barbul, A.; Sisto, D. A.; Wasserkrug, H. L., et al. Metabolic and immune effects of arginine in post injury hyperalimentation. J. Trauma 21:970–974; 1981.

    PubMed  CAS  Google Scholar 

  3. Cynober, L.; Saizy, R.; Nguyen Dinh, F., et al. Effect of enterally administered ornithine α ketoglutarate on plasma and urinary amino acid levels after burn injury. J. Trauma 24:590–596; 1984.

    PubMed  CAS  Google Scholar 

  4. Cynober, L.; Lioret, N.; Coudray-Lucas, C., et al. Action of ornithine alpha-ketoglutarate on protein metabolism in burn patients. Nutrition 3:187–191; 1987.

    Google Scholar 

  5. Cynober, L.; Blonde, F.; Lioret, N., et al. Arterio-venous differences in amino acids, glucose, lactate and fatty acids in burn patients; effect of ornithine alpha-ketoglutarate. Clin. Nutr. 5:221–226; 1986. 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Cynober, L.; Aussel, C.; Vaubourdolle, M., et al. Modulation of insulin action on 2-deoxyglucose uptake by chloroquine in chick embryo fibroblasts. Diabetes 36:27–32; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Cynober, L.; Coudray-Lucas, C.; Guéchot, J., et al. Action of ornithine α ketoglutarate, ornithine hydrochloride and calcium α ketoglutarate on plasma amino acid and hormonal patterns in healthy subjects. J. Am. Coll. Nutr., in press; 1990.

  8. Darmaun, D.; Matthews, D. E.; Desjeux, J. F., et al. Glutamine and glutamate nitrogen exchangeable pools in cultured fibroblasts: a stable isotope study. J. Cell. Physiol. 134:143–148; 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Engström, W.; Zetterberg, A. The relationship between purines, pyrimidines, nucleosides, and glutamine for fibroblast cell proliferation. J. Cell. Physiol. 120:233–241; 1984.

    Article  PubMed  Google Scholar 

  10. Gay, G.; Villaume, C.; Beaufrand, M. J., et al. Effects of ornithine alphaketoglutarate on blood insulin, glucagon and aminoacids in alcoholic cirrhosis. Biomedicine 30:173–177; 1979.

    PubMed  CAS  Google Scholar 

  11. Holley, R. W.; Kiernan, J. A. Control of the initiation of DNA synthesis in 3T3 cells: serum factors. Proc. Natl. Acad. Sci. USA 71:2908–2911; 1974.

    Article  CAS  Google Scholar 

  12. Krassowski, J.; Rousselle, J.; Maeder, E., et al. The effect of ornithine-α-ketoglutarate on insulin and glucagon secretion in normal subjects. Acta Endocrinol. 98:252–255; 1981.

    PubMed  CAS  Google Scholar 

  13. Lescoat, G.; Theze, N.; Fraslin, J. M., et al. Influence of ornithine on albumin synthesis by fetal and neonatal hepatocytes maintained in culture. Cell Differ. 21:1–29; 1987.

    Article  Google Scholar 

  14. Lescoat, G.; Desvergne, B.; Pasdeloup, N., et al. Effects of ornithine alpha-ketoglutarate on albumin secretion by adult rat hepatocyte co-cultures. In: Guillouzo, A., ed. Liver cells and drugs. Paris INSERM: John Libbey Eurotext Ed. 1988, 431–436.

    Google Scholar 

  15. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:439–450; 1951.

    Google Scholar 

  16. Mertes, N.; Möllmann, M.; Pfisterer, M., et al. Nitrogen sparing effect of Ornicetil-supplemented TPN in hypercatabolic septic or polytraumatized patients. In: Soeters, P. B; Wilson, J. H. P.; Mejer, A. J., et al., eds. Advances in ammonia and hepatic encephalopathy. North Holland: Elsevier; 1988:141–153.

    Google Scholar 

  17. Molimard, R.; Charpentier, L.; Lemonnier, F. Modifications de l'aminoacidémie des cirrhotiques sous l'influence de sels d'ornithine. Ann. Nutr. Metab. 26:25–36; 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Pegg, A. E.; McCann, P. P. Polyamine metabolism and function. Am. J. Physiol. 253:C212–221; 1982.

    Google Scholar 

  19. Perez-Sala, D.; Perrilla, R.; Ayuso, M. S. Key role ofl-alanine in the control of hepatic protein synthesis. Biochem. J. 241:491–498; 1987.

    PubMed  CAS  Google Scholar 

  20. Pradoura, J. P.; Carcassonne, Y.; Spitalier, J. M. Double blind randomized trial of (+) ornithine alpha-ketoglutarate enteral supplementation in operated patients with oropharynx cancer. Clin. Nutr. 5(Suppl.):132; 1986.

    Google Scholar 

  21. Roth, E.; Ollenschlager, G.; hamilton, G., et al. Influence of two glutamine-containing dipeptides on growth of mammalian cells. In Vitro Cell. & Dev. Biol. 24:696–698; 1988.

    CAS  Google Scholar 

  22. Rubin, H. pH serum and Zn++ in the regulation of DNA synthesis in cultures of chick embryo cells. J. Cell. Physiol. 82:231–238; 1973.

    Article  PubMed  CAS  Google Scholar 

  23. Schaeffer, E. L.; Seidenfeld, J. Effects of polyamine depletion on serum stimulation of quiescent 3T3 murine fibroblast cells. J. Cell. Physiol. 133:546–552; 1987.

    Article  Google Scholar 

  24. Sens, D. A.; Levine, J. H.; Buse, M. G. Stimulation of hepatic and renal ornithine decarboxylase activity by selected amino acids. Metabolism 32:787–792; 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Souba, W. W.; Smith, R. J.; Wilmore, D. W. Glutamine metabolism by the intestinal tract. JPEN 9:608–617; 1985.

    CAS  Google Scholar 

  26. Tabor, C. W.; Tabor, H. Polyamines. Ann. Rev. Biochem. 53:749–790; 1984.

    Article  PubMed  CAS  Google Scholar 

  27. Vaubourdolle, M.; Cynober, L.; Lioret, N., et al. Influence of enterally administered ornithine α ketoglutarate on hormonal patterns in burn patients. Burns 13:349–356; 1987.

    Article  CAS  Google Scholar 

  28. Vaubourdolle, M.; Jardel, A.; Coudray-Lucas, C., et al. Metabolism and kinetics of parenterally administered ornithine and α-ketoglutarate in healthy and burned animals. Clin. Nutr. 7:105–111; 1988.

    Article  CAS  Google Scholar 

  29. Vaubourdolle, M.; Jardel, A.; Coudray-Lucas, C., et al. Fate of enterally-administered ornithine in healthy animals: interactions with α ketoglutarate. Nutrition 5:183–188; 1989.

    PubMed  CAS  Google Scholar 

  30. Zielke, H. R.; Sumbilla, C. M.; Zielke, C. L., et al. Glutamine metabolism by cultured mammalian cells. In: Häussinger, D.; Sies, H., eds. Glutamine metabolism in mammalian tissues. Berlin, Heidelberg: Springer-Verlag; 1984:247–254.

    Google Scholar 

  31. Zielke, H. R.; Ozand, P. T.; Tildon, J. T., et al. Reciprocal regulation of glucose and glutamine utilization by cultured human diploid fibroblasts. J. Cell. Physiol. 95:41–48; 1978.

    Article  PubMed  CAS  Google Scholar 

  32. Zielke, H. R.; Sumbilla, C. M.; Ozand, P. T. Effect of glucose on aspartate and glutamate synthesis by human diploid fibroblasts. J. Cell. Physiol. 107:251–254; 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Zielke, H. R.; Zielke, C. L.; Ozand, P. T. Glutamine: a major energy source for cultured mammalian cells. Fed. Proc. 43:121–125; 1984.

    PubMed  CAS  Google Scholar 

  34. Hammarqvist, F.; Wernerman, J.; Vinnars, E. Alpha-ketoglutarate added to postoperative total parenteral nutrition improves nitrogen balance and reduces the loss of free glutamine in skeletal muscle. JPEN 13:6S; 1989.

  35. Hammarqvist, F.; Wernerman, J.; Ali, R., et al. Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis, and improves nitrogen balance. Ann. Surg. 209:455–461; 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaubourdolle, M., Salvucci, M., Coudray-Lucas, C. et al. Action of ornithine α ketoglutarate on DNA synthesis by human fibroblasts. In Vitro Cell Dev Biol 26, 187–192 (1990). https://doi.org/10.1007/BF02624111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624111

Key words

Navigation