Skip to main content
Log in

Initiation and characterization of primary mouse kidney epithelial cultures

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Primary cultures of murine renal epithelial cells were established from a preparation of proximal tubule fragments. Confluent cultures exhibited multiple dome formation, indicating the presence of tight junctions and an intact transcellular transport process. Ultrastructural analysis revealed a monolayer of polarized cells, with a sparse but clearly defined microvillar surface facing the growth medium and a basolateral surface attached to the substratum. Cultures grown on collagen gels did not show domes. The epithelial monolayer exhibited several differentiated functions of the proximal tubule: a) parathyroid hormone (PTH)-stimulated cAMP synthesis; b) production of 24,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3; c) high alkaline phosphatase activity; and d) Na+-dependent transport of phosphate (Pi) and α-methylglucoside (α-MG). The sugar uptake was selectively inhibited by phlorizin, a competitive inhibitor of glucose uptake at the luminal membrane. Kinetic analysis revealed independent transport systems for Pi and α-MG, with Km values corresponding to the high affinity systems identified in brush border membrane vesicles derived from the proximal tubule. Pi uptake by the epithelial monolayers was regulated by the concentration of Pi in the growth medium. Phorbol esters and PTH did not exert an effect on Pi and α-MG transport in mouse primary cultures. The present study demonstrates that primary cultures provide a useful in vitro preparation to investigate renal proximal tubular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leighton, J.; Brada, Z.; Estes, L. W., et al. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney. Science 163:472–473; 1969.

    Article  PubMed  CAS  Google Scholar 

  2. Misfeldt, D. S.; Hamamoto, S. T.; Pitelka, D. R. Transepithelial transport in cell culture. Proc. Natl. Acad. Sci. USA 73:1212–1216; 1976.

    Article  PubMed  CAS  Google Scholar 

  3. Cereijido, M.; Robbins, E. S.; Dolan, W. J., et al. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 77:853–880; 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Chung, S. D.; Alavi, N.; Livingston, D., et al. Characterization of primary rabbit kidney cultures that express proximal tubule functions in a hormonally-defined medium. J. Cell Biol. 95:118–126; 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Chuman, L.; Fine, L.; Cohen, A., et al. Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium. J. Cell Biol. 94:506–510; 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Sakhrani, L. M.; Badie-Dezfooly, B.; Trizan, W., et al. Transport and metabolism of glucose by renal proximal tubular cells in primary culture. Am. J. Physiol. 246:F757-F764; 1984.

    PubMed  CAS  Google Scholar 

  7. Sakhrani, L.; Tessitore, N.; Massry, S. Effect of calcium on transport characteristics of cultured proximal renal cells. Am. J. Physiol. 249:F346-F355; 1985.

    PubMed  CAS  Google Scholar 

  8. Waqar, M.; Seto, M.; Chung, S. D., et al. Phosphate uptake by primary renal proximal tubule cell cultures grown in hormonally defined medium. J. Cell. Physiol. 124:411–423; 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Wilson, P.; Dillingham, M.; Breckon, R., et al. Defined human renal tubular epithelia in culture: growth, characterization, and hormonal response. Am. J. Physiol. 248:F436-F443; 1985.

    PubMed  CAS  Google Scholar 

  10. Yau, C.; Rao, L.; Silverman, M. Sugar uptake into a primary culture of dog kidney proximal tubular cells. J. Physiol. Pharmacol. 63:417–426; 1985.

    CAS  Google Scholar 

  11. Hruska, K.; Goligorsky, M.; Scoble, J., et al. Effects of parathyroid hormone on cytosolic calcium in renal proximal tubular primary cultures. Am. J. Physiol. 251:F188-F198; 1986.

    PubMed  CAS  Google Scholar 

  12. Tenenhouse, H. S.; Scriver, C. R.; McInnes, R. R., et al. Renal handling of phosphatein vivo andin vitro by the X-linked hypophosphatemic male mouse: evidence for a defect in the brush border membrane. Kidney Int. 14:236–244; 1978.

    PubMed  CAS  Google Scholar 

  13. Lyon, M. F.; Scriver, C. R.; Baker, L. R. I., et al. TheGy mutation: another cause of X-linked hypophosphatemia in mouse. Proc. Natl. Acad. Sci. USA 83:4899–4903; 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Glorieux, F.; Scriver, C. R. Loss of a parathyroid hormone-sensitive component of phosphate transport in X-linked hypophosphatemia. Science 175:997–1000; 1972.

    Article  PubMed  CAS  Google Scholar 

  15. Boneh, A.; Reade, T. M.; Scriver, C. R., et al. Audiometric evidence for two forms of X-linked hypophosphatemia in humans, apparent counterparts ofHyp andGy mutations in mouse. Am. J. Med. Genet. 27:997–1003; 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Taub, M.; Livingston, D. The development of serum-free hormone-supplemented media for primary kidney cultures and their use in examining renal functions. Ann. NY Acad. Sci. 372:406–421; 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Krebs, H. A.; Cornell, N. W.; Lund, P., et al. Isolated liver cells as experimental material, In: Lundquist, F.; Tygstrup, N., eds. Regulation of hepatic metabolism. Copenhagen: Munksgaard; 1974:726–750.

    Google Scholar 

  18. Goldman, H.; Wong, I.; Patel, Y. C. A study of the structural and biochemical development of human fetal islets of Langerhans. Diabetes 31:897–920; 1982.

    PubMed  CAS  Google Scholar 

  19. Michalopoulos, G.; Pitot, H. C. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp. Cell Res. 94:70–78; 1975.

    Article  PubMed  CAS  Google Scholar 

  20. Pearse, A. G. E. Histochemistry. Theoretical and applied. London: J. and A. Churchill, Ltd.; 1968.

    Google Scholar 

  21. Bessey, O. A.; Lowry, O. H.; Brock, M. J. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 164:321–329; 1946.

    CAS  Google Scholar 

  22. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  23. Tenenhouse, H. S.; Veksler, A. Effect of theHyp mutation and diet-induced hyperparathyrodism on renal parathyroid hormone-and forskolin-stimulated adenosine 3′,5′-monophosphate production and brush border membrane phosphate transport. Endocrinology 118:1047–1053; 1986.

    PubMed  CAS  Google Scholar 

  24. Trechsel, U.; Bonjour, J-P.; Fleisch, H. Regulation of the metabolism of 25-hydroxyvitamin D3 in primary cultures of chick kidney cells. J. Clin. Invest. 64:206–217; 1979.

    Article  PubMed  CAS  Google Scholar 

  25. Bligh, E. G.; Dyer, W. J. A rapid method for total lipid extraction and purification. Can. J. Biochem. 37:911–917; 1959.

    Article  PubMed  CAS  Google Scholar 

  26. Jones, G. Ternary solvent mixtures for improved resolution of hydroxylated metabolites of vitamin D2 and vitamin D3 during high-performance liquid chromatography. J. Chromatogr. 221:27–37; 1980.

    Article  CAS  Google Scholar 

  27. Silverman, M. The chemical and steric determinants governing sugar interactions with renal tubular membranes. Biochim. Biophys. Acta 332:248–262; 1974.

    Article  CAS  Google Scholar 

  28. Bonventre, J. V.; Cheung, J. Y. Cytosolic free calcium concentration in cultured renal epithelial cells. Am. J. Physiol. 250:F329-F338; 1986.

    PubMed  CAS  Google Scholar 

  29. Valentich, J. D.; Tchao, R.; Leighton, J. Hemicyst formation stimulated by cyclic AMP in dog kidney cell line MDCK. J. Cell. Physiol. 100:291–304; 1979.

    Article  PubMed  CAS  Google Scholar 

  30. Kriz, W.; Kaissling, B. Structural organization of the mammalian kidney. In: Seldin, D. W.; Giebisch, G., eds., The kidney: physiology and pathophysiology. New York: Raven Press; 1985:265–306

    Google Scholar 

  31. Rindler, M. J.; Chuman, L.; Schaeffer, L., et al. Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK). J. Cell Biol. 81:635–648; 1979.

    Article  PubMed  CAS  Google Scholar 

  32. Valentich, J. D. Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting duct. Ann. NY Acad. Sci. 372:384–404; 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Brunette, M. G.; Chabardes, D.; Imbert-Teboul, M., et al. Hormone-sensitive adenylate cyclase along the nephron of genetically hypophosphatemic mice. Kidney Int. 15:357–369; 1979.

    PubMed  CAS  Google Scholar 

  34. Morel, F. Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240:F159-F164; 1981.

    PubMed  CAS  Google Scholar 

  35. Goldring, S. R.; Dayer, J.-M.; Ausiello, D. A., et al. A cell strain cultured from porcine kidney increases cyclic AMP content upon exposure to calcitonin or vasopressin. Biochem. Biophys. Res. Commun. 83:434–440; 1978.

    Article  PubMed  CAS  Google Scholar 

  36. Kawashima, H.; Torikai, S.; Kurokawa, K. Localization of 25-hydroxyvitamin D3-1-α-hydroxylase and 24-hydroxylase along the rat nephron. Proc. Natl. Acad. Sci. USA 78:1199–1203; 1981.

    Article  PubMed  CAS  Google Scholar 

  37. Barfuss, D. W.; Schafer, J. A. Differences in active and passive glucose transport along the proximal nephron. Am. J. Physiol. 240:F323-F332; 1981.

    Google Scholar 

  38. Bell, C. L. Transport studies in primary cultures of mouse renal epithelial cells. Montreal, Quebec: McGill University; 1986. Thesis.

    Google Scholar 

  39. Jefferson, D. M.; Cobb, M. H.; Gennaro, J. F., et al. Transporting renal epithelium: culture in hormonally-defined serum-free medium. Science 210:912–914; 1980.

    Article  PubMed  CAS  Google Scholar 

  40. Taub, M.; Sato, G. Growth of functional primary cultures of kidney epithelial cells in defined medium. J. Cell. Physiol. 105:369–378; 1980.

    Article  PubMed  CAS  Google Scholar 

  41. Pickett, P. B.; Pitelka, D. R.; Hamamoto, S. T., et al. Occluding junctions and cell behavior in primary cultures of normal and neoplastic mammary gland cells. J. Cell Biol. 66:316–332; 1975.

    Article  PubMed  CAS  Google Scholar 

  42. Rosenberg, M. R.; Michalopoulous, G. Kidney proximal tubular cells isolated by collagenase perfusion grow in defined media in the absence of growth factors. J. Cell. Physiol. 131:107–113; 1987.

    Article  PubMed  CAS  Google Scholar 

  43. Yoneyama, Y.; Lever, J. E. Induction of microvillar hydrolase activities by cell density and exogenous differentiation inducers in an established kidney epithelial cell line (LLC-PK1). J. Cell. Physiol. 121:64–73; 1984.

    Article  PubMed  CAS  Google Scholar 

  44. Reid, L.; Morrow, B.; Jubinsky, P., et al. Regulation of growth and differentiation of epithelial cells by hormones, growth factors and substrates of extracellular matrix. Ann. NY Acad. Sci. 372:354–372; 1981.

    Article  PubMed  CAS  Google Scholar 

  45. Kleinman, H. K.; Klebe, R. J.; Martin, G. R. Role of collagenous matrices in the adhesion and growth of cells. J. Cell Biol. 88:473–485; 1981.

    Article  PubMed  CAS  Google Scholar 

  46. Wachstein, M. Histochemical staining reactions of the normally functioning and abnormal kidney. J. Histochem. Cytochem. 3:246–270; 1955.

    PubMed  CAS  Google Scholar 

  47. Sacktor, B. The brush border of the renal proximal tubule and the intestinal mucosa. In: Jamieson, G. A.; Robinson, D. M., eds. Mammalian cell membranes, vol. 4. membranes and cellular functions. London: Buttersworth & Co., Ltd.; 1977:221–254.

    Google Scholar 

  48. Brunette, M. G.; Chan, M.; Ferrier, C., et al. Site of 1,25(OH)2vitamin D3 synthesis in the kidney. Nature 276:287–289; 1978.

    Article  PubMed  CAS  Google Scholar 

  49. Tenenhouse, H. S. Abnormal renal mitochondrial 25-hydroxyvitamin D3-1-hydroxylase activity in the vitamin D and calcium deficient X-linkedHyp mouse. Endocrinology 113:816–818; 1983.

    PubMed  CAS  Google Scholar 

  50. Kinne, R.; Murer, H.; Kinne-Saffran, E., et al. Sugar transport by renal plasma membrane vesicles: characterization of the systems in brush-border microvilli and basolateral plasma membranes. J. Membr. Biol. 21:375–395; 1975.

    Article  CAS  Google Scholar 

  51. Hoffman, N.; Thees, M.; Kinne, R. Phosphate transport by isolated renal brush border membranes. Pfluegers Arch. 362:147–156; 1976.

    Article  Google Scholar 

  52. Silverman, M. Thein vivo localization of high affinity phlorizin receptors to the brush border surface of the proximal tubule in dog kidney. Biochim. Biophys. Acta 339:92–102; 1974.

    Article  PubMed  CAS  Google Scholar 

  53. Ling, K. Y.; Im, W. B.; Faust, R. G., Na+-independent sugar uptake by rat intestinal and renal brush border and basolateral membrane vesicles. Int. J. Biochem. 13:693–700; 1981.

    Article  PubMed  CAS  Google Scholar 

  54. Walker, J. L.; Yan, T. S.; Quamme, G. A. Presence of multiple sodium-dependent phosphate transport processes in proximal brush-border membranes. Am. J. Physiol. 252:F226-F231; 1987.

    PubMed  CAS  Google Scholar 

  55. Brunette, M. G.; Chan, M.; Maag, V., et al. Phosphate uptake by superficial and deep nephron brush border membranes. Effect of dietary phosphate and parathyroid hormone. Pfluegers Arch. 400:356–362; 1984.

    Article  CAS  Google Scholar 

  56. Bindels, R. J. M.; van den Brock, L. A. M.; van Os, C. H. Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes. Biochim. Biophys. Acta 897:83–92; 1987.

    Article  PubMed  CAS  Google Scholar 

  57. Turner, R. J.; Moran, A. Heterogeneity of sodium-dependentd-glucose transport sites along the proximal tubule. Evidence from vesicle studies. Am. J. Physiol. 242:F406-F414; 1982.

    PubMed  CAS  Google Scholar 

  58. Kragh-Hansen, U.; Roigaard-Petersen, H.; Jacobsen, C., et al. Renal transport of neutral amino acids. Biochem. J. 220:15–24; 1984.

    PubMed  CAS  Google Scholar 

  59. Caverzasio, J.; Brown, D. D. A.; Biber, J., et al. Adaptation of phosphate transport in phosphate-deprived LLC-PK1 cells. Am. J. Physiol. 248:F112-F127; 1985.

    Google Scholar 

  60. Kinoshita, Y.; Fukase, M.; Yamatani, T., et al. Phorbol esters stimulate phosphate accumulation synergistically with A23187 in cultured renal tubular cells. Biochem. Biophys. Res. Commun. 136:177–182; 1986.

    Article  PubMed  CAS  Google Scholar 

  61. Nakai, M.; Kinoshita, Y.; Fukase, M., et al. Phorbol esters inhibit phosphate uptake in opossum kidney cells: a model of proximal renal tubular cells. Biochem. Biophys Res. Commun. 145:303–308; 1987.

    Article  PubMed  CAS  Google Scholar 

  62. Cole, J. A.; Eber, S. L.; Poelling, R. E., et al. A dual mechanism for regulation of kidney phosphate transport by parathyroid hormone. Am. J. Physiol. 253:E221-E227; 1987.

    PubMed  CAS  Google Scholar 

  63. Mohrmann, I.; Mohrmann, M.; Biber, J., et al. Stimulation of Na+-phosphate cotransport in LLC-PK1 cells by 12-O-tetradecanoylphorbol 13-acetate (TPA). Biochim. Biophys. Acta 860:35–43; 1986.

    Article  PubMed  CAS  Google Scholar 

  64. Kinoshita, Y.; Fukase, M.; Miyauchi, A., et al. Establishment of a parathyroid hormone-responsive phosphate transport system in vitro using cultured renal cells. Endocrinology 119:1954–1963; 1986.

    Article  PubMed  CAS  Google Scholar 

  65. Chase, L. R.; Aurbach, G. D. Parathyroid function and the renal excretion of 3′,5′-adenylic acid. Proc. Natl. Acad. Sci. USA 58:518–526; 1967.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Cindy Bell was the recipient of an MRC Studentship Award. This work was supported by the MRC (Group in Medical Genetics).

This is publication number 88011 of the McGill University-Montreal Children's Hospital Research Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, C.L., Tenenhouse, H.S. & Scriver, C.R. Initiation and characterization of primary mouse kidney epithelial cultures. In Vitro Cell Dev Biol 24, 683–695 (1988). https://doi.org/10.1007/BF02623606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623606

Key words

Navigation