Skip to main content
Log in

Harmonic distortion from nonlinear systems with broadband inputs: Applications to lung mechanics

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present a simple index, extended harmonic distortion (k d ), to represent the degree of system nonlinearity under sparse pseudorandom noise inputs (SPRN). The frequencies in a SPRN waveform are neither harmonics nor sums or differences of the other component frequencies. Expressed by percentage, thek d is the square root of the ratio of output power at non-input frequencies to the total output power. We evoke three simple corrections to recover the truek d under imperfect SPRN inputs. Simulations on two block-structured nonlinear models (Wiener and Hammerstein) demonstrate the necessity and effectiveness of these corrections especially for the Wiener-type nonlinearity. By applyingk d to pressure-flow data of dog lungs, we found that the nonlinear harmonic interactions from a lung arise primarily from its tissues most likely the processes governing the tissue stiffness. This nonlinearity, assessed fromk d , is stronger at higher tidal volumes and enhanced (but to a lesser degree) during bronchoconstriction. We conclude that since thek d approach avoids the necessity for multiple-input measurements and lengthy data records, it may be useful for tracking the dynamic variations in nonlinearities of a physiological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnas, G. M., D. N. Campbell, C. F. Mackenzie, J. E. Mendham, B. G. Fahy, C. J. Runcie, and G. E. Mendham. Lung, chest wall, and total respiratory system resistance and elastance in the normal range of breathing.Am. Rev. Respir. Dis. 143:240–244, 1991.

    PubMed  CAS  Google Scholar 

  2. Barnas, G. M., D. Stamenović, and K. R. Lutchen. Lung and chest wall impedances in the dog in normal range of breathing: effects of pulmonary edema.J. Appl. Physiol. 73:1040–1046, 1992.

    PubMed  CAS  Google Scholar 

  3. Davis, K. A., and K. R. Lutchen. Respiratory impedance spectral estimation for digitally created random noise.Ann. Biomed. Eng. 9:179–195, 1991.

    Article  Google Scholar 

  4. Fredberg, J. J., and D. Stamenović. On the imperfect elasticity of lung tissue.J. Appl. Physiol. 67(6):2408–2419, 1989.

    PubMed  CAS  Google Scholar 

  5. Fung, Y. C.Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1981, 433 pp.

    Google Scholar 

  6. Grant, B. J. B., and L. J. Paradowski. Characterization of pulmonary arterial input impedance with lumped parameter models.Am. J. Physiol. 252 (Heart Circ. Physiol. 21): H585-H593, 1987.

    PubMed  CAS  Google Scholar 

  7. Gunst, S. J., D. O. Warner, T. A. Wilson, and R. E. Hyatt. Parenchymal interdependence and airway response to methacholine in excised dog lobs.J. Appl. Physiol. 65: 2409–2497, 1988.

    Google Scholar 

  8. Hantos, Z., Á. Adamicza, E. Govaerts, and B. Daróczy. Mechanical impedance of the lungs and chest wall in the cat.J. Appl. Physiol. 73:427–433, 1992.

    PubMed  CAS  Google Scholar 

  9. Hantos, Z., B. Daróczy, B. Suki, G. Galgoczy, and T. Csendes. Forced oscillatory impedance of the respiratory system at low frequencies.J. Appl. Physiol. 60:123–132, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Ingenito, E. P., L. Mark, and B. Davison. Effects of acute lung injury on dynamic tissue properties.J. Appl. Physiol. 77(6):2689–2697, 1994.

    PubMed  CAS  Google Scholar 

  11. Ludwig, M. S., F. M. Robatto, S. Simard, D. Stamenović, and J. J. Fredberg. Lung tissue resistance during contractile stimulation: structural damping decomposition.J. Appl. Physiol. 72(4):1332–1337, 1992.

    PubMed  CAS  Google Scholar 

  12. Lutchen, K. R., and A. C. Jackson. Effects of tidal volume and methacholine on low frequency total respiratory impedance in dogs.J. Appl. Physiol. 68:2128–2138, 1990.

    PubMed  CAS  Google Scholar 

  13. Lutchen, K. R., B. Suki, Q. Zhang, F. Peták, B. Daróczy, and Z. Hantos. Airway and tissue mechanics during physiological breathing and bronchoconstriction in dogs.J. Appl. Physiol. 77(1):373–385, 1994.

    PubMed  CAS  Google Scholar 

  14. Lutchen, K. R., K. Yang, D. W. Kaczka, and B. Suki. Optimal ventilator waveform for estimating low frequency mechanical impedance in healthy and diseased subjects.J. Appl. Physiol. 75(1):478–488, 1993.

    PubMed  CAS  Google Scholar 

  15. Nagase, T., A. Moretto, and M. S. Ludwig. Airway and tissue behavior during induced constriction in rats: intravenous vs. aerosol administration.J. Appl. Physiol. 76(2): 830–838, 1994.

    PubMed  CAS  Google Scholar 

  16. Navajas, D., S. Mijailovich, G. M. Glass, D. Stamenović, and J. J. Fredberg. Dynamic response of the isolated passive rat diaphragm strip.J. Appl. Physiol. 73(6):2681–2692, 1992.

    PubMed  CAS  Google Scholar 

  17. Otis, A. B., C. B. McKerrow, R. A. Bartlett, J. Mead, M. B. McIlroy, N. J. Silverstone, and E. P. Radford, Jr. Mechanical factors in distribution of pulmonary ventilation.J. Appl. Physiol. 8:427–443, 1956.

    PubMed  CAS  Google Scholar 

  18. Radke, N. F., C. L. Lucas, B. R. Wilcox, and B. A. Keagy. Infant pulmonary vascular model based on the pulmonary input impedance spectrum.Ann. Biomed. Eng. 13: 531–550, 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Romero, P. V., F. M. Robatto, S. Simard, and M. S. Ludwig. Lung tissue behavior during methacholine challenge in rabbits in vivo.J. Appl. Physiol. 73(1):207–212, 1992.

    PubMed  CAS  Google Scholar 

  20. Schetzen, M.The Volterra and Wiener Theories of Nonlinear Systems. Malabar, Florida: Robert E. Krieger Publishing Company, 1989, 573 pp.

    Google Scholar 

  21. Stamenović, D., K. R. Lutchen, and G. M. Barnas. Alternative model of respiratory tissue viscoplasticity.J. Appl. Physiol. 75(3):1062–1069, 1993.

    PubMed  Google Scholar 

  22. Suki, B., and K. R. Lutchen. Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: applications to respiratory mechanics.IEEE Trans. Biomed. Eng. 39(11):1142–1151, 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Suki, B., and J. H. T. Bates. A nonlinear viscoelastic model of lung tissue mechanics.J. Appl. Physiol. 71(3): 826–833, 1991.

    PubMed  CAS  Google Scholar 

  24. Suki, B., Z. Hantos, B. Daróczy, G. Alkaysi, and S. Nagy. Nonlinearity and harmonic distortion of dog lungs measured by low-frequency forced oscillations.J. Appl. Physiol. 71(1):69–75, 1991.

    PubMed  CAS  Google Scholar 

  25. Suki, B. Nonlinear phenomena in respiratory mechanical measurement.J. Appl. Physiol. 74(5):2574–2584, 1993.

    PubMed  CAS  Google Scholar 

  26. Suki, B., Q. Zhang, and K. R. Lutchen. Relationship between frequency and amplitude dependence in the lung: a nonlinear block-structured modeling approach.J. Appl. Physiol., in press.

  27. Victor, J. D. Nonlinear systems analysis: comparison of white noise and sum of sinusoids in a biological system.Proc. Natl. Acad. Sci. USA 76(2):996–998, 1979.

    Article  PubMed  CAS  Google Scholar 

  28. Victor, J., and R. Shapley. A method of nonlinear analysis in the frequency domain.Biophys. J. 29:459–484, 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Suki, B. & Lutchen, K.R. Harmonic distortion from nonlinear systems with broadband inputs: Applications to lung mechanics. Ann Biomed Eng 23, 672–681 (1995). https://doi.org/10.1007/BF02584464

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584464

Keywords

Navigation