Skip to main content
Log in

The biology ofAstrocytoma: Lessons learned from chronic myelogenous leukemia—hypothesis

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Chronic myelogenous leukemia (CML) is an example of a “well-differentiated” neoplasm that develops following neoplastic transformation of a precursor cell. The biology of astrocytic neoplasms can be interpreted in light of concepts that have emerged from studies of the myeloproliferative disorders. Astrocytomas may arise from a pluripotential precursor cell whose progeny, although transformed, retain the ability to differentiate, and do so along astrocytic lines. The result is a neoplasm composed of “mature” tumor cells, similar one to another, and resembling normal astrocytes. Malignant change, like blast crisis in CML, then occurs as a consequence of further molecular genetic events leading to accelerated growth and maturation arrest in a previously differentiating neoplastic cell. This hypothesis challenges the conventional view that astrocytomas arise from astrocytes and that malignant change occurs as a result of dedifferentiation. Extensions of this hypothesis may be relevant to the biology of other glial tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett DC: Differentiation in mouse melanoma cells: initial reversibility and an on-off stochastic model. Cell 34:445–453, 1983

    Article  PubMed  CAS  Google Scholar 

  2. Rundles RW: Chronic myelogenous leukemia. In: Williams WJ, Beutler E, Erslev AJ, Lichtman MA (eds) Hematology. New York, McGraw-Hill, 1983, pp 196–214

    Google Scholar 

  3. Greaves MF: “Target” cells, cellular phenotypes, and lineage fidelity in human leukemia. J Cell Physiol supplement 1:113–125, 1982

    Article  CAS  Google Scholar 

  4. Silverstein MN: Myeloproliferative diseases. Postgrad Med 61:206–210, 1977

    PubMed  CAS  Google Scholar 

  5. Murphy S: Polycethemia vera. In: Williams WJ, Beutler E, Erslev AJ, Lichtman MA (eds) Hematology. New York, McGraw-Hill, 1983, pp 185–196

    Google Scholar 

  6. Silverstein MN: Primary thrombocythemia. In: Williams WJ, Beutler E, Erslev AJ, Lichtman MA (eds) Hematology. New York, MCGraw-Hill, 1983, pp 218–221

    Google Scholar 

  7. Groopman JE: The pathogenesis of myelofibrosis in myeloproliferative disorders. Ann Intern Med 92:857–858, 1980

    PubMed  CAS  Google Scholar 

  8. Greaves MF: Differentiation-linked leukemogenesis in lymphocytes. Science 234:697–704, 1986

    Article  PubMed  CAS  Google Scholar 

  9. Paterson JA: Dividing and newly produced cells in the corpus callosum of adult mouse cerebrum as detected by light microscopic radioautography. Anat Anz Jena 153:149–168, 1983

    CAS  Google Scholar 

  10. Kim SU, Moretto G, Shin DH, Lee VM: Modulation of antigenic expression in cultured adult human oligodendrocytes by derivatives of adenosine3′,5′-cyclic monophosphate. J Neuro Sci 69:81–91, 1985

    Article  CAS  Google Scholar 

  11. Kleihues P, Rajewsky MF: Chemical neuro-oncogenesis: role of structural DNA modifications, DNA repair and neural target cell population. In: Rosenblum ML, Wilson CB (eds) Brain Tumor Biology. Basel, Karger, 1984, pp 1–16

    Google Scholar 

  12. Cushing H, Wolbach SB: The transformation of malignant paravertebral sympathicoblastoma into a benign ganglioneuroma. Am J Pathol 3:203–220, 1927

    Google Scholar 

  13. Feigin I, Epstein F, Mangiardi, J: Extensive advanced maturation of medulloblastoma to astrocytoma and ependymoma. JNO 1:95–108, 1983

    CAS  Google Scholar 

  14. Jones-Villeneuve EMV, McBurney MW, Rogers KA, Kalnins VI: Retionic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 94:253–262, 1982

    Article  PubMed  CAS  Google Scholar 

  15. Raff MC, Miller RH, Noble M: A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396, 1981

    Article  Google Scholar 

  16. Choi BH, Kim RC: Expression of glial fibrillary acidic protein in immature oligodendroglia. Science 223:407–409, 1984

    Article  PubMed  CAS  Google Scholar 

  17. Bailey P, Cushing HA: A classification of tumors of the glioma group on a histogenic basis with a correlated study of prognosis. Philadelphia, Lippincott, 1926

    Google Scholar 

  18. Cairncross JG: Astrocytomas. In: Fedoroff S, Vernadakis A (eds) Astrocytes: Cell Biology and Pathology of Astrocytes, Volume 3. Orlando, Academic Press, 1986, pp 338–356

    Google Scholar 

  19. Westermark B: Growth factors and oncogenes in human glioma. JNO 4:93, 1986

    Google Scholar 

  20. Rakic P: Limits of neurogenesis in primates. Science 227:1054–1056, 1985

    Article  PubMed  CAS  Google Scholar 

  21. Rubinstein LJ, Herman MM, Vandenberg SR: Differentiation and anaplasia in central neuroepithelial tumors. In: Rosenblum ML, Wilson CB (eds) Brain Tumor Biology. Basel, Karger, 1984, pp 32–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cairncross, J.G. The biology ofAstrocytoma: Lessons learned from chronic myelogenous leukemia—hypothesis. J Neuro-Oncol 5, 99–104 (1987). https://doi.org/10.1007/BF02571297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02571297

Key words

Navigation