Skip to main content

Advertisement

Log in

Stimulation of alkaline phosphatase activity in cultured neonatal mouse calvarial bone cells by parathyroid hormone

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The effect of parathyroid hormone (PTH) on alkaline phosphatase activity was examined in confluent, serum-free primary cultures of neonatal mouse calvarial cells. It was found that synthetic bPTH-(1-34) caused an increase in the specific activity of skeletal alkaline phosphatase isoenzyme by 18 hours. Between 10 and 500 ng/ml, the mganitude of the change was directly related to peptide concentration. The change occurred in the absence of any effect on cell number, total cell protein, or DNA and was not the result of an effect on either proliferation or survival of a specific cell population. Results of histochemical studies indicate that bPTH-(1-34) caused an increase in the proportion of cells containing enzyme activity. The response was duplicated by intact bPTH-(1-84) and DBcAMP, but not by oxidized bPTH-(1-34) or insulin and did not require prostaglandin synthesis or hydroxylation of 25-hydroxyvitamin D3. These results demonstrate that bPTH has a direct effect on osteoblast maturationin vitro, that the effect is specific for PTH, and suggest that it is mediated by cAMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young RW (1964) Specialization of bone cells. In: Frost HM (ed) Bone biodynamics. Charles C Thomas, Springfield, Ill, p 117

    Google Scholar 

  2. McGuire JL, Marks SC Jr (1974) The effects of parathyroid hormone on bone cell structure and function. Clin Orthop Rel Res 100:392–405

    Article  CAS  Google Scholar 

  3. Gaillard PJ (1961) Parathyroid and bone in tissue culture. In: Greep RO, Talmage RV (eds) The parathyroids. Charles C Thomas Springfield, Ill, p 20

    Google Scholar 

  4. Raisz LG (1965) Bone resorption in tissue culture. Factors influencing the response to parathyroid hormone. J Clin Invest 44:103–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goldhaber P (1966) Remodeling of bone in tissue culture. J Dent Res 45:490–499

    Article  Google Scholar 

  6. Dietrich JW, Canalis EM, Maina DM, Raisz LG (1976) Hormonal control of bone collagen synthesisin vitro: Effects of parathyroid hormone and calcitonin. Endocrinology 98:943–949

    Article  CAS  PubMed  Google Scholar 

  7. Rosen DM, Luben RA (1983) Multiple hormonal mechanisms for the control of collagen synthesis in an osteoblast-like cell line, MMB-1. Endocrinology 112:992–999

    Article  CAS  PubMed  Google Scholar 

  8. Howard GA, Bottemiller BL, Baylink DJ (1980) Evidence for the coupling of bone formation to bone resorptionin vitro. Metab Bone Dis Rel Res 2:131–135

    Article  Google Scholar 

  9. Parsons JA (1976) Parathyroid physiology and the skeleton. In: Bourne GH (ed) The biochemistry and physiology of bone, vol 4. Academic Press, New York, p 159

    Google Scholar 

  10. Herrman-Erlee MPM, Heersche JNM, Hekkelman JW, Gaillard PJ, Tregear GW, Parsons JA, Potts JT, Jr (1976) Effects on bonein vitro of bovine parathyroid hormone and synthetic fragments representing residues 1–34, 2–34 and 3–34. Endocrine Res Comm 3:21–35

    Article  Google Scholar 

  11. Weisbrode SE, Capen CC, Nagode LA (1974) Effects of parathyroid hormone on bone of thyroparathyroidectomized rats Am J Pathol 75:529–536

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Raisz LG, Kream BE (1981) Hormonal control of skeletal growth. Ann Rev Physiol 43:225–238

    Article  CAS  Google Scholar 

  13. Robison R (1923) The possible significance of hexosphosphate esters in ossification. Biochem J 17:283–293

    Article  Google Scholar 

  14. Fell HB, Robison R (1929) The growth, development and phosphatase activity of embryonic avian femora and limb buds cultivatedin vitro. Biochem J 23:767–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bourne GH (1972) Phosphatase and calcification. In: Bourne GH (ed) The biochemistry and physiology of bone, vol 2. Academic Press, New York, p 79

    Google Scholar 

  16. Osdoby P, Caplan AI (1981) Characterization of a bone-specific alkaline phosphatase in chick limb mesenchymal cell cultures. Develop Biol 86:136–146

    Article  CAS  PubMed  Google Scholar 

  17. Luben RA, Wong GL, Cohn DV (1976) Biochemical characterization with parathormone and calcitonin of isolated bone cells: Provisional identification of osteoclasts and osteoblasts. Endocrinology 99:526–534

    Article  CAS  PubMed  Google Scholar 

  18. Majeska RJ, Rodan SB, Rodan GA (1980) Parathyroid hormone-responsive clonal cell lines from rat osteosarcoma. Endocrinology 107:1494–1503

    Article  CAS  PubMed  Google Scholar 

  19. Osdoby P, Caplan AI (1981) First bone formation in the developing chick limb. Develop Biol 86:147–156

    Article  CAS  PubMed  Google Scholar 

  20. Peck WA, Birge AJ, Fedak SA (1964) Bone cells: Biochemical and biological studies after enzymatic isolation. Science 146:1476–1477

    Article  CAS  PubMed  Google Scholar 

  21. Brunk CF, Jones KC, James TW (1979) Assay for nanogram quantities of DNA in cellular homogenates. Anal Biochem 92:497–500

    Article  CAS  PubMed  Google Scholar 

  22. Lowry OH, Roberts NR, Wu M, Hixon WS, Crawford EJ (1954) The quantitative histochemistry of the brain. II. Enzyme measurements. J Biol Chem 207:19–37

    CAS  PubMed  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  24. Kaplow LS (1963) Cytochemistry of leukocyte alkaline phosphatase. Am J Clin Pathol 39:439–449

    Article  CAS  PubMed  Google Scholar 

  25. McComb RB, Bowers GN, Posen S (1979) Alkaline phosphatase. Plenum Press, New York

    Book  Google Scholar 

  26. Van Belle H (1972) Kinetics and inhibition of alkaline phosphatases from canine tissue. Biochim Biophys Acta 289:158–168

    Article  PubMed  Google Scholar 

  27. Majeska RJ, Rodan GA (1982) Alkaline phosphatase inhibition by parathyroid hormone and isoproterenol in a clonal rat osteosarcoma cell line. Possible mediation by cyclic AMP. Calcif Tissue Int 34:59–66

    Article  CAS  PubMed  Google Scholar 

  28. Woolfe CM (1968) Principles of biometry. D van Nostrand, Princeton

    Google Scholar 

  29. Wong GL, Luben RA, Cohn DV (1977) 1,25-dihydroxycho-lecalciferol and parathormone: Effects on isolated osteoclast-like and osteoblast-like cells. Science 197:663–665

    Article  CAS  PubMed  Google Scholar 

  30. Kumegawa M, Ikeda E, Tanaka S, Haneji T, Yora T, Sakagishi Y, Minami N, Hiramatsu M (1984) The effects of prostaglandin E2, parathyroid hormone, 1,25 dihydroxycholecalciferol, and cyclic nucleotide analogs on alkaline phosphatase activity in osteoblastic cells. Calcif Tissue Int 36:72–76

    Article  CAS  PubMed  Google Scholar 

  31. MacDonald BR, Gallagher JA, Ahnfelt Ronne I, Russell RGG (1984) PTH stimulates the production of prostaglandins by cells derived from human bone. Calcif Tissue Intl 36:465

    Google Scholar 

  32. Turner RT, Puzas JE, Forte MD, Lester GE, Gray TK, Howard GA, Baylink DJ (1980)In vitro synthesis of 1,25-dihydroxycholecalciferol and 24, 25-dihydroxycholecalciferol by isolated calvarial cells. Proc Natl Acad Sci USA 77:5720–5724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Howard GA, Turner RT, Sherrard DJ, Baylink DJ (1981) Human bone cells in culture metabolize 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Biol Chem 256:7738–7740

    CAS  PubMed  Google Scholar 

  34. Mulkins MA, Mangolagas SC, Deftos LJ, Sussman HH (1983) 1,25-dihydroxyvitamin D3 increases bone alkaline phosphatase isoenzyme levels in human osteogenic sarcoma cells. J Biol Chem 258:6219–6225

    CAS  PubMed  Google Scholar 

  35. Mangolagas SC, Burton DW, Deftos LJ (1981) 1,25-dihydroxyvitamin D3 stimulates the alkaline phosphatase activity of osteoblast-like cells. J Biol Chem 256:7115–7117

    Google Scholar 

  36. Majeska RJ, Rodan GA (1982) The effect of 1,25(OH)2D3 on alkaline phosphatase in osteoblastic osteosarcoma cells. J Biol Chem 257:3362–3365

    CAS  PubMed  Google Scholar 

  37. Kurihara N, Ikeda K, Hakeda Y, Tsunoi M, Maeda N, Kumegawa M (1984) Effect of 1,25-dihydroxyvitamin D3 on alkaline phosphatase activity and collagen synthesis in osteoblastic cells, MC3T3-E1. Biochem Biophys Res Comm 119:767–771

    Article  CAS  PubMed  Google Scholar 

  38. Horwitz, KB, Koseki Y, McGuire WL (1978) Estrogen control of progesterone receptor in human breast cancer: Role of estradiol and antiestrogen. Endocrinology 103:1742–1751

    Article  CAS  PubMed  Google Scholar 

  39. Yee JA, Shew RL, Kenny AD, Pang PKT (1983) Effects of oxidized synthetic parathyroid hormone on bonein vitro. Calcif Tissue Int 35:689

    Article  Google Scholar 

  40. Green H, Kehinde O (1975) An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5:19–27

    Article  CAS  PubMed  Google Scholar 

  41. Linkhart TA, Clegg CH, Hauschka SD (1981) Myogenic differentiation in permanent clonal mouse myoblast cell lines: Regulation by macromolecular growth factors in culture medium. Develop Biol 86:19–30

    Article  CAS  PubMed  Google Scholar 

  42. Nakatani Y, Tsunoi M, Hakeda Y, Kurihara N, Fujita K, Kumegawa M (1984) Effects of parathyroid hormone on cAMP production and alkaline phosphatase activity in osteoblastic clone MC3T3-E1 cells. Biochem Biophys Res Comm 123:894–898

    Article  CAS  PubMed  Google Scholar 

  43. Felix R, Fleisch H (1979) Increase in alkaline phosphatase activity in calvaria cells cultured with diphosphonates. Biochem J 183:73–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen TL, Cone CM, Feldman D (1983) Glucoccorticoid modulation of cell proliferation in cultured osteoblast-like cells: Differences between rat and mouse. Endocrinology 112:1739–1745

    Article  CAS  PubMed  Google Scholar 

  45. Chen TL, Feldman D (1984) Modulation of PTH-stimulated cyclic AMP in cultured rodent bone cells: The effects of 1,25(OH)2 vitamin D3 and its interaction with glucocorticoids. Calcif Tissue Intl 36:580–585

    Article  CAS  Google Scholar 

  46. Peck WA, Klahr S (1979) Cyclic nucleotides in bone and mineral metabolism. In: Greengard P, Robison GA (eds) Advances in cyclic nucleotide research, vol 11. Raven Press, New York, p 89

    Google Scholar 

  47. Koyama H, Kato R, Ono T (1972) Induction of alkaline phosphatase by cyclic AMP or its dibutyryl derivative in a hybrid line between mouse and Chinese hamster in culture. Biochem Biophys Res Comm 46:305–311

    Article  CAS  PubMed  Google Scholar 

  48. Nose K, Katsuta H (1974) Induction of alkaline phosphatase activity by dibutyryl adenosine 3′, 5′-cyclic monophosphate in aneuploid rat liver cells. Exp Cell Res 87:8–14

    Article  CAS  PubMed  Google Scholar 

  49. Firestone GL, Heath EC (1981) The cyclic AMP-mediated induction of alkaline phosphatase in mouse L-cells. J Biol Chem 256:1396–1403

    CAS  PubMed  Google Scholar 

  50. Burch WM, Lebovitz HE (1982)In vitro stimulation of alkaline phosphatase activity in immature embryonic chick pelvic cartilage by adenosine 3′,5′-monophosphate. J Cell Biol 93:338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yee, J.A. Stimulation of alkaline phosphatase activity in cultured neonatal mouse calvarial bone cells by parathyroid hormone. Calcif Tissue Int 37, 530–538 (1985). https://doi.org/10.1007/BF02557837

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02557837

Key words

Navigation