Skip to main content
Log in

A resolution-enhanced Fourier Transform Infrared spectroscopic study of the environment of the CO3 2− ion in the mineral phase of enamel during its formation and maturation

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

A resolution-enhanced Fourier Transform Infrared (FTIR) Spectroscopic study of the CO3 2− ion in pig enamel of increasing age and maturity has demonstrated the existence of four different, main carbonate locations. The major CO3 2− site arises as a result of the substitution of CO3 2− ions in the positions occupied by PO4 3− ions in the apatitic lattice. In addition, two minor locations have been identified in positions in which the CO3 2− ions substitute for OH ions. The fourth carbonate group appears to be in an unstable location. Its concentration has been found to decrease with aging and maturation, during which there is a progressive increase in the amount of mineral deposited in the enamel. The distribution of the carbonate ions in the different apatitic sites varies randomly during the formation of the mineral phase in enamel and during its maturation. Although these changes have been shown to be related to changes in the composition of the mineral phase, a comparison of the parameters assessing the degree of crystallinity of the mineral phase from υ2CO3 2− and υ4PO3 2− infrared absorption data reveals a significant discrepancy related to the nonhomogeneous partition of the CO3 2− ion in the mineral phase. After maximum mineralization is reached, the composition of the mature mineral phase is decidedly different than that of the initial mineral deposited; the changes affect principally the concentrations of Ca2+, OH, and HPO4 2− ions, but not the CO3 2− ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hallsworth AS, Weatherell JA, Robinson C (1965) Loss of carbonate during the first stages of enamel caries. Caries Res 7:345–348

    Google Scholar 

  2. Cutress TW (1972) The inorganic composition and solubility of dental enamel from several specified population groups. Arch Oral Biol 17:93–109

    Article  PubMed  CAS  Google Scholar 

  3. Sobel AE (1966) Interrelationship of tooth composition, body fluids, diet and caries susceptibility. Ann NY Acad Sci 85:96–109

    Article  Google Scholar 

  4. Elliot JC (1964) The crystallographic structure of dental enamel and related apatites. Ph.D. Thesis, University of London

  5. LeGeros RZ, Trautz OR, LeGros JP, Klein E (1968) Carbonate substitution in the apatitic structure. Bull Soc Chim Fr 1712–1718

  6. Bonel G, Montel G (1966) Sur L' Introduction des ions CO3 2− dans le reseau des apatites calciques. CR Acad Sci C 236:1010–1013

    Google Scholar 

  7. Elliot JC, Holcomb AW, Young RA (1985) Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human enamel. Calcif Tissue Int 37:372–375

    Google Scholar 

  8. Roux P, Bonel G (1980) Evolution structurale sous haute pression des apatites carbonatees de type B. Ann Chim 5:397–405

    CAS  Google Scholar 

  9. Vignoles M (1984) Contribution a l'etude des apatites carbonatees de type B. These d' Etat, Institut National Polytechnique de Toulouse

  10. Termine JD, Lundy DR (1973) Hydroxide and carbonate in rat bone mineral and its synthetic analogues. Calcif Tissue Res 13:73–82

    Article  PubMed  CAS  Google Scholar 

  11. Rey C, Collins B, Goehl T, Glimcher MJ (1989) The carbonate environment in bone mineral. A resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164

    Article  PubMed  CAS  Google Scholar 

  12. Fukae M, Tanabe T, Ijiri H, Shimizu M (1980) Studies on porcine enamel proteins: a possible original enamel protein. Tsurumi Dent J 6(2):87–94

    CAS  Google Scholar 

  13. Roufosse AH, Landis WJ, Sabine NK, Glimcher MJ (1979) Identification of brushite in newly deposited bone mineral from embryonic chicks. J Ultrastruc Res 68:235–255

    Article  CAS  Google Scholar 

  14. Kauppinen JR, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. App Spect 35:271–276

    Article  CAS  Google Scholar 

  15. Hannah RW, Swinehart JS (1974) Experiments in techniques of infrared spectroscopy. Perkin E (ed) Norwalk, Conn

  16. Meyer JL, Fowler BO (1982) Lattice defects in nonstoichiometric calcium hydroxylapatite. A chemical approach. Inorg Chem 21:3029–3035

    Article  CAS  Google Scholar 

  17. Greenfield DJ, Termine JD, Eanes ED (1974) A chemical study of apatites prepared by hydrolysis of amorphous calcium phosphate in carbonate-containing aqueous solutions. Calcif Tissue Res 14:131–138

    Article  PubMed  CAS  Google Scholar 

  18. Rey C, Lian JB, Grynpas M, Shapiro F, Zylberberg L, Glimcher MJ (1989) Non-apatitic environments in bone mineral: FT-IR detection, biological properties and changes in several disease states. Connect Tissue Res 21:267–273

    PubMed  CAS  Google Scholar 

  19. Termine JD, Posner AS (1966) Infrared determination of the percentage of crystallinity in apatitic calcium phosphates. Nature 241:268–270

    Article  Google Scholar 

  20. Tochon-Danguy HJ (1978) Effect of fluorine on the crystallinity index of bone mineral substance. Fluoride in Bone, Symp CEMO 2nd 1977, pp 73–81

  21. Pellegrino ED, Biltz NM (1971) Mineralization in the chick embryo I: monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complex. Calcif Tissue Res 10:128–135

    Article  Google Scholar 

  22. Nelson DGA, Featherstone JDR (1984) Preparation and characterization of carbonate apatites. Calcif Tissue Int 34:69–81

    Google Scholar 

  23. LeGeros R, Balmain N, Bonel G (1986) Structure and composition of the mineral phase of periosteal bone. J Chem Res Sym 1:8–9

    Google Scholar 

  24. Brudevold F, Soremark R (1967) Structure and chemical organization of teeth, vol 2. Miles AEW (ed) Academic Press, New York, p 247

    Google Scholar 

  25. Engel MB, Hilding OH (1984) Mineralization of developing teeth. Scan Elect Micros IV:1833–1845

    Google Scholar 

  26. Hiller CR, Robinson C, Weatherell JA (1975) Variations in the composition of developing rat incisor enamel. Calcif Tissue Res 18:1–12

    Article  PubMed  CAS  Google Scholar 

  27. Aoba T, Moreno EC (in press) Changes in the nature and composition of enamel mineral during porcine amelogenesis. Calcif Tissue Int

  28. Scott DB, Simmelink JW, Nygaard V (1971) Chemistry and physiology of enamel: a symposium. University of Michigan Prep, Ann Arbor, pp 6–24

    Google Scholar 

  29. Daculsi G, Menanteau J, Kerebel LM, Mitre D (1984) Enamel crystals: size, shape, length and growth process. High resolution TEM and biological study. In: Fearnhead RW, Sugas S (eds) Tooth Enamel Proc Intl Symp Comp Prop Funct Struct Tooth, Enamel IVth. Elsevier, New York, pp 14–18

    Google Scholar 

  30. Glimcher MJ, Daniel EJ, Travis DF, Kamhi S (1965) Electron optical and x-ray diffraction studies of the organization of the inorganic crystals in embryonic bovine enamel. J Ultrastruct Res (suppl) 7:77

    Google Scholar 

  31. Travis DF, Glimcher MJ (1964) The structure and organization of, and the relationship between the organic matrix and the inorganic crystals of embryonic bovine enamel. J Cell Biol 23:447–497

    Article  PubMed  CAS  Google Scholar 

  32. Glimcher MJ (1981) On the form and function of bone: from molecules to organs. Wolff's Law revisited. In: Veis A (ed) The chemistry and biology of mineralized connective tissues. Elsevier/North Holland New York, pp 618–673

    Google Scholar 

  33. Kerebel B, Daculsi G, Kerebel LM (1979) Ultrastructural studies of enamel crystallities. J Dent Res 58:844–851

    PubMed  CAS  Google Scholar 

  34. Garnier P, Voegel JC, Frank RM (1976) Dissolution kinetics of synthetic hydroxyapatite crystal and human enamel. J Biol Buccale 4:323–330

    PubMed  CAS  Google Scholar 

  35. Frazier PD (1968) Adult human enamel: an electron microscopic study of crystallite size and morphology. J Ultrastructr Res 22:1–11

    Article  CAS  Google Scholar 

  36. Johnson NN (1966) Differences in the shape of human enamel crystallites after partial destruction by caries. EDTA and carious acids. Arch Oral Biol 11:1412–1424

    Google Scholar 

  37. Jongebloed WL, Van Den Berg PJ, Arends J (1974) The dissolution of hydroxyapatite single crystals in acids. Calcif Tissue Res 15:1–9

    Article  PubMed  CAS  Google Scholar 

  38. Arends J, Jongebloed WL (1981) Apatite single crystals. Formation, dissolution and influence of CO3 2− ions. Recl Trav. Chim Pays-Bas 100:3–9

    CAS  Google Scholar 

  39. Marshall AF, Lawless KR (1981) TEM. Study of the central dark line in enamel crystallites. J Dent Res 60:1773–1782

    PubMed  CAS  Google Scholar 

  40. Nakahara H, Kakei M (1984) Central dark line and carbonic anhydrase: problems relating to crystal nucleation in enamel. In: Fearnhead RW, Sugas S (eds) Tooth enamel IV

  41. Daculsi G, LeGeros RZ, (1986) Central darklines in synthetic and biological apatites. Abstracts of IADR meeting. J Dent Res 65:802

    Google Scholar 

  42. Eastoe JE (1960) Organic matrix of tooth enamel. nature 187:411–412

    Article  PubMed  CAS  Google Scholar 

  43. Glimcher MJ, Mechanic GL, Bonar LC, Daniel EJ (1961) The amino acid composition of the organic matrix of decalcified fetal bovine dental enamel. J Biol Chem 236:3210–3213

    PubMed  CAS  Google Scholar 

  44. Glimcher MJ, Mechanic GL, Friberg UA (1964) The amino acid composition of the organic matrix and the neutral-soluble and acid-soluble components of embryonic bovine enamel. Biochem J 93:198–202

    PubMed  CAS  Google Scholar 

  45. Termine JD, Belcourt AB, Christner PJ, Conn KM, Nylen MU (1980) Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel. J Biol Chem 225:9760–9768

    Google Scholar 

  46. Renugopalakrishnan V, Strawich ES, Horowitz PM, Glimcher MJ (1986) Studies of the secondary structure of amelogenin from bovine tooth enamel. Biochemistry 25:4879–4887

    Article  PubMed  CAS  Google Scholar 

  47. Renugopalakrishnan V, Pattabiraman N, Prabhakaran M, Strawich ES, Glimcher MJ (1989) Tooth enamel protein, amelogenin, has a probably β-spiral internal channel within a single polypeptide chain: preliminary molecular mechanics and dynamics studies. Biopolymers 28:597–603

    Google Scholar 

  48. Renugopalakrishnan V, Prabhakaran M, Huang S-G, Balasubramaniam A, Strawich ES, Glimcher MJ (1989) Secondary structure and limited three-dimensional structure of bovine amelogenin. Connect Tissue Res 22:131–138

    PubMed  CAS  Google Scholar 

  49. Glimcher MJ, Friberg VA, Levine PT (1964) The isolation and amino acid composition of the enamel proteins of erupted bovine teeth. Biochem J 93:202–210

    PubMed  CAS  Google Scholar 

  50. Aoba T, Moriwaki Y, Doi Y, Okazaki M, Takahashi T (1980) Different x-ray scattering from apatite crystals and its relation to amorphous bone mineral. J Osaka University Dental School 20:81–90

    CAS  Google Scholar 

  51. Blumenthal NC, Betts F, Posner AS (1975) Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite. Calcif Tissue Res 18:81–90

    Article  PubMed  CAS  Google Scholar 

  52. Termine JD, Eanes ED, Conn KM (1980) Phosphoprotein modulation of apatite crystallization Calcif Tissue Int 31(3):247–251

    Article  PubMed  CAS  Google Scholar 

  53. Blumenthal NC, Posner AS, Silverman LD, Rosenberg LC (1979) Effect of proteoglycans on in vitro hydroxyapatite formation Calcif Tissue Int 27:75–82

    Article  PubMed  CAS  Google Scholar 

  54. Frank RM (1979) Tooth enamel—current state of the art. J Dent Res 58:689–694

    Google Scholar 

  55. Barroug A, Rey C, Trombe JC, Montel G (1981) Sur la preparation on milien aqueux d' une apatite carbonatee de type AB comparable a' l'email dentaire. CR Acad Sci Paris 292 II, 303–306

    CAS  Google Scholar 

  56. LeGros RZ, Kijkowska R, LeGeros JP, Abergas T, Bleiwas H (1987) CO3-for-OH (type A) and CO3-for-PO4 (type B) substitutions in precipitated carbonate apatites. J Dent Res (abstract) 66:190

    Google Scholar 

  57. Bonel G (1972) Contribution a' l'etude de la carbonatation des apatites. Ann Chim 7:127–144

    CAS  Google Scholar 

  58. Labarthe JC, Bonel G, Montel G (1973) Sur la structure et les proprietes des apatites carbonatees de type B phosphocalciques. Ann Chim 8:289–301

    CAS  Google Scholar 

  59. Tochon-Danguy HJ, Geffroy M, Baud CA (1980) Electron-spin resonance study of the effect of carbonate substitution in synthetic apatites from human teeth. Arch Oral Biol 25:357–361

    Article  PubMed  CAS  Google Scholar 

  60. Young RA, Spooner S (1969) Neutron diffraction studies of human tooth enamel Arch Oral Biol 15:47–63

    Article  Google Scholar 

  61. Brudevold F, Aasenden R, Bakhos T (1982) Preliminary study of posteruptive maturation of teeth in site. Caries Res 16:243–248

    PubMed  CAS  Google Scholar 

  62. Woltgens JHM, Vingerling PA, Witjes F (1980) Chemical evidence of two separate apatite phases in human enamel. Arch Oral Biol 25:435–436

    Article  PubMed  CAS  Google Scholar 

  63. Driessens FC, Heijligers HJ, Borggreven JM, Woltgens JH (1985) Posteruptive maturation of tooth enamel studied with the electron microprobe. Caries Res 19:390–395

    Article  PubMed  CAS  Google Scholar 

  64. Flim GJ, Kolar Z, Arends J (1978) Diffusion of fluoride ion in dental enamel at pH 7. J Biol 24:59–64

    Google Scholar 

  65. Flim GJ, Arends J (1977) Diffusion of calcium in bovine enamel. Calcif Tissue Res 24:59–64

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rey, C., Renugopalakrishnan, V., Shimizu, M. et al. A resolution-enhanced Fourier Transform Infrared spectroscopic study of the environment of the CO3 2− ion in the mineral phase of enamel during its formation and maturation. Calcif Tissue Int 49, 259–268 (1991). https://doi.org/10.1007/BF02556215

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556215

Key words

Navigation