Skip to main content
Log in

Single anion channels reconstituted from cardiac mitoplasts

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Ion channels from sheep cardiac mitoplast (inverted inner mitochondrial membrane vesicle) preparations were incorporated into voltage-clamped planar lipid bilayers. The appearance of anion rather than cation channels could be promoted by exposing the bilayers to osmotic gradients formed by Cl salts of large, relatively imperment, cations at a pH of 8.8. Two distinct activities were identified. These comprised a multisubstate anion channel of intermediate conductance (∼60 pS in 300vs. 50mm choline Cl, ∼100 pS in symmetric 150mm KCl), and a lower-conductance anion channel (∼25 or ∼50 pS in similar conditions), which only displayed two well-defined substates, at ∼25 and ∼50% of the fully open state. The larger channels were not simple multiples of the lower-conductance channels, but both discriminated poorly, and to a similar extent, between anions and cations (PCl /Pcholine + ∼12, PCl /PK +∼8). The lower-conductance channel was only minimally selective between different anions (PNO 3 (1.0)=PCl >PBr >PI >PSCN (0.8)), and its conductance failed to saturate even in high (>1.0 M) activities of KCl. The channels were not obviously voltage dependent, and they were unaffected by 0.5 mM SITS, H2O2, propranolol, quinine or amitriptyline, or by 2 mM ATP, or by variations in pH (5.5–8.8). Ca2+ and Mg2+ did not alter single channel activity, but did modify single current amplitudes in the lower-conductance channel. This effect, together with voltage-dependent substate behavior, is described in the following paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonenko, Y.N., Kinnally, K.W., Perini, S., Tedeschi, H. 1991. Selective effect of inhibitors on inner mitochondrial membrane ion channels.FEBS Lett. 285:89–93

    Article  CAS  Google Scholar 

  • Antonenko, Y.N., Kinnally, K.W., Tedeschi, H. 1991. Identification of anion and cation pathways in the inner mitochondrial membrane by patch-clamping of mouse liver mitoplasts.J. Membrane Biol. 124:151–158

    Article  CAS  Google Scholar 

  • Ashley, R.H. 1989. Activation and conductance properties of ryanodine-sensitive calcium channels from brain microsomal membranes incorporated into planar lipid bilayers.J. Membrane Biol. 111:179–189

    Article  CAS  Google Scholar 

  • Chan, T.L., Greenwalt, J.W., Pedersen, P.L. 1970. Biochemical and ultrastructural properties of a mitochondrial inner membrane fraction deficient in outer membrane and matrix activities.J. Cell Biol. 45:291–305

    Article  CAS  Google Scholar 

  • Colombini, M. 1986. Voltage gating in VDAC.In: Ion Channel Reconstitution. C. Miller, editor. Chapter 22. Plenum, New York

    Google Scholar 

  • Crompton, M., Costi, A., Hayat, L. 1987. Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria.Biochem. J. 245:915–918

    Article  CAS  Google Scholar 

  • Davidson, A.M., Halestrap, A.P. 1990. Partial inhibition by cyclosporin A of the swelling of liver mitochondriain vivo andin vitro induced by submicromolar [Ca2+], but not by butyrate.Biochem. J. 268:147–152

    Article  CAS  Google Scholar 

  • de Meis, L., Inesi, G. 1992. Functional evidence of a transmembrane channel within the Ca2+ transport ATPase of sarcoplasmic reticulum.FEBS Lett. 299:33–35

    Article  Google Scholar 

  • Fournier, N., Ducet, G., Crevat, A. 1987. Action of cyclosporin on mitochondrial calcium fluxes.J. Bioenerg. Biomembr. 19:297–303

    Article  CAS  Google Scholar 

  • Franciolini, F., Petris, A. 1990. Chloride channels of biological membranes.Biochim. Biophys. Acta 1031:247–259

    Article  CAS  Google Scholar 

  • Garlid, K.D., Beavis, A.D. 1986. Evidence for the existence of an inner membrane anion channel in mitochondria.Biochim. Biophys. Acta 853:187–204

    Article  CAS  Google Scholar 

  • Halestrap, A.P. 1987. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+.Biochem. J. 244:159–164

    Article  CAS  Google Scholar 

  • Halliwell, B. 1989. Oxidants and the central nervous system: some fundamental questions.Acta Neurol. Scand. 126:23–33

    Article  CAS  Google Scholar 

  • Hayman, K.A., Ashley, R.H. 1993. Structural features of a multisubstate cardiac mitoplast anion channel: Inferences from single channel recording.J. Membrane Biol. 136:191–197

    Article  CAS  Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. 108:37–77

    Article  CAS  Google Scholar 

  • Hunter, D.R., Haworth, R.A., Southard, J.H. 1976. Relationship between configuration, function and permeability in calcium-limited mitochondria.J. Biol. Chem. 251:5069–5077

    CAS  PubMed  Google Scholar 

  • Inoue, I., Nagase, H., Kishi, K., Higuti, T. 1991. ATP-sensitive K+ channel in the mitochondrial inner membrane.Nature 352:244–247

    Article  CAS  Google Scholar 

  • Kinnally, K.W., Antonenko, Y.N., Zorov, D.B. 1992. Modulation of inner mitochondrial membrane channel activity.J. Bioenerg. Biomembr. 24:99–110

    Article  CAS  Google Scholar 

  • Kinnally, K.W., Tedeschi, H., Campo, M.L. 1989. Mitochondrial channel activity studied by patch-clamping mitoplasts.J. Bioenerg. Biomembr. 21:497–506

    Article  CAS  Google Scholar 

  • Kinnally, K.W., Zorov, D., Antonenko, Y., Perini, S. 1991. Calcium modulation of mitochondrial inner membrane channel activity.Biochem. Biophys. Res. Comm. 176:1183–1188

    Article  CAS  Google Scholar 

  • Klitsch, T., Siemen, D. 1991. Inner mitochondrial membrane anion channel is present in brown adipocytes but is not identical with the uncoupling protein.J. Membrane Biol. 122:69–75

    Article  CAS  Google Scholar 

  • Knauf, P.A., Rothstein, A. 1971. Chemical modification of membranes. I. Effects of sulphydryl and amino reactive reagents on anion and cation permeability of the human red blood cell membrane.J. Gen. Physiol. 58:190–210

    Article  CAS  Google Scholar 

  • Mannella, C.A., Tedeschi, H. 1992. The emerging picture of mitochondrial membrane channels.J. Bioenerg. Biomemb. 24:3–6

    Article  CAS  Google Scholar 

  • Markwell, M.A., Hääs, S.M., Tolbert, N.E., Bieber, L.L. 1981. Protein determination in membrane and lipoprotein samples: manual and automated procedures.Methods Enzymol. 72:296–303

    Article  CAS  Google Scholar 

  • Moran, O., Sandri, G., Panfili, E., Stühmer, W., Sorgato, M.C. 1990. Electrophysiological characterization of contact sites in brain mitochondria.J. Biol. Chem. 265:908–913

    CAS  PubMed  Google Scholar 

  • Petronilli, V., Szabò, I., Zoratti, M. 1989. The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria.FEBS Lett. 259:137–143

    Article  CAS  Google Scholar 

  • Rousseau, E., Roberson, M., Meissner, G. 1988. Properties of single chloride-selective channel from sarcoplasmic reticulum.Eur. Biophys J. 16:143–151

    Article  CAS  Google Scholar 

  • Schnaitman, C., Greenwalt, J.W. 1968. Enzymatic properties of the inner and outer membranes of rat liver mitochondria.J. Cell Biol. 38:158–175

    Article  CAS  Google Scholar 

  • Sorgato, M.C., Keller, B.U., Stühmer, W. 1987. Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel.Nature 330:498–500

    Article  CAS  Google Scholar 

  • Sorgato, M.C., Moran, O. 1993. Channels in mitochondrial membranes: knowns, unknowns and prospects for the future.Crit. Rev. Biochem. Mol. Biol. 18:127–171

    Article  Google Scholar 

  • Sorgato, M.C., Moran, O., De Pinto, V., Keller, B.U., Stühmer, W. 1989. Further investigation of the high-conductance ion channel of the inner membrane of mitochondria.J. Bioenerg. Biomembr. 21:485–495

    Article  CAS  Google Scholar 

  • Szabò, I., Zoratti, M. 1991. The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A.J. Biol. Chem. 266:3376–3379

    PubMed  Google Scholar 

  • Tabares, L., Mazzanti, M., Clapham, D.E. 1991. Chloride channels in the nuclear envelope.J. Membr. Biol. 123:49–54

    Article  CAS  Google Scholar 

  • Tanifuji, M., Sokabe, M., Kasai, M. 1987. An anion channel of sarcoplasmic reticulum incorporated into planar lipid bilayers: single-channel behavior and conductance properties.J. Membrane Biol. 99:102–111

    Article  Google Scholar 

  • Toth, P.P., Ferguson-Miller, S.M., Suelter, C.H. 1986. Isolation of highly coupled heart mitochondria in high yield using a bacterial collagenase.Methods Enzymol. 125:16–27

    Article  CAS  Google Scholar 

  • Williams, N., Pedersen, P.L. 1986. Rapid purification of F1-ATPase from rat liver mitochondria using a modified chloroform extraction procedure coupled to HPLC.Methods Enzymol. 126:477–489

    Article  CAS  Google Scholar 

  • Wright, E.M., Diamond, J.M. 1977. Anion selectivity in biological systems.Physiol. Rev. 57:109–156

    Article  CAS  Google Scholar 

  • Yamamoto, F., Suzuki, N. 1987. Blockage of chloride channels by HEPES buffer.Proc. Roy. Soc. Lond. B. 230:93–100

    Article  CAS  Google Scholar 

  • Zambrowicz, E.B., Colombini, M. 1993. A novel description of ion flow through large channels.Biophys. J. 64:A327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayman, K.A., Spurway, T.D. & Ashley, R.H. Single anion channels reconstituted from cardiac mitoplasts. J. Membrain Biol. 136, 181–190 (1993). https://doi.org/10.1007/BF02505762

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02505762

Key words

Navigation