Skip to main content
Log in

Effect of fly ash and slag on the fracture characteristics of high performance concrete

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The premature deterioration of concrete structures in aggressive environments has necessitated the development of high performance concrete (HPC). The major difference between conventional concrete and HPC is essentially the use of chemical and mineral admixtures. The improved pore structure of HPC achieved by the use of chemical and mineral admixtures causes densification of paste-aggregate transition zone, which in turn affects the fracture characteristics. Hence, studies were taken up to investigate the effect of fly ash and slag on the fracture characteristics of HPC. Beam specimens (geometrically similar and single size variable notch) with locally available fly ash (25%) and slag (50%) as cement replacement materials were prepared and tested in a servo-controlled Universal Testing Machine (UTM) under displacement control. From the value of the peak load for each beam, various fracture parameters were calculated. The results show that there is a reduction in the fracture energy due to addition of fly ash or slag, which can be attributed to the presence of unhydrated particles of size larger than that of normal flaws in concrete. Also due to densification, the post peak behaviour is steeper for the fly ash or slag based HPC mixes. The results of the investigation are presented in this paper.

Résumé

La détérioration prématurée des structures en béton dans des milieux agressifs a favorisé le développement des bétons haute performance. La principale différence entre le béton ordinaire et celui à haute performance est l'addition dans ce dernier d'adjuvants chimiques et minéraux. L'utilisation de tels adjuvants améliore globalement la structure poreuse du béton et contribue aussi à la densification de l'interface pâte/granulat et de ce fait, modifie les caractéristiques de rupture. Afin d'étudier les effets de l'ddition de cendres volantes ou de laitier sur les caractéristiques de rupture du béton à haute performance, des poutres-spécimens avec entaille pratiquée à mi-portée ont été coulées avec des mélanges contenant jusqu' à 25% de cendres volantes ou 50% de laitier comme substituants du ciment. Deux catégories de poutres ont été testées sous déplacement contrôlé sur une machine servohydraulique UTM (Universal Testing Machine): des poutres à dimensions variables avec un rapport Longueur d'entaille/Profondeur constant et des poutres à dimensions constantes et un rapport Longuer d'entaille/Profondeur variable. A partir de la valeur de la charge à la rupture, des paramètres de rupture ont été calculés. Les résultats montrent une diminution dans la valeur de l'énergie de fissuration après addition d'adjuvants. Cette diminution peut s'expliquer par la présence dans le béton de particules de matériau non-hydratées de taille suprérieure à la taille habituelle des défauts internes dans la pâte. Par ailleurs, en raison de la densification de l'interface pâte/granulat, le comportement post-pic est modifié pour les mélanges contenant des cendres volantes ou du laitier. Les résultats de cette étude sont présentés ci-après.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hover, K.C., ‘Concrete mixture proportioning with water reducing admixtures to enhance durability: a quantitative model’,Cement and Concrete Composites 20 (1998) 113–119.

    Article  Google Scholar 

  2. CEB/fib, ‘CEB-FIP Model Code’, Comité Euro-International du Béton, Thomas Telsford, London, 1994.

    Google Scholar 

  3. Mehta, P.K., ‘Role of pozzolanic and cementitious materials in sustainable development of the concrete industry’,ACI SP-178 (1998) 1–20.

    Google Scholar 

  4. Krishnamoorthy, T.S., Gopalakrishnan S., Balasubramanian, K., Bharatkumar, B.H. and Rama Mohan Rao, P., ‘Investigations on the cementitious grout containing supplementary cementitious materials’,Int. Journal of Cement and Concrete Research 32 (9) (September 2002) 1395–1405.

    Article  Google Scholar 

  5. Swamy, R.N., ‘Design for durability and strength through the use of fly ash and slag in concrete’,ACI SP-171 (1997) 1–72.

    Google Scholar 

  6. Mehta, P.K., ‘Concrete technology at the cross-roads-problems and apportunities’,ACI SP-144 (1994) 1–30.

    Google Scholar 

  7. Bharatkumar, B.H., Narayanan, R., Raghu Prasad, B.K. and Ramachandramurthy, D.S., ‘Mix Proportioning of High Performance Concrete’,Journal of Cement and Concrete Composites 23 (2001) 71–80.

    Article  Google Scholar 

  8. Giaccio, G., Rocco C. and Zerbino, R., ‘The fracture energy of high strength concrete’,Mater. Struct. 26 (1993) 381–386.

    Article  Google Scholar 

  9. Zhou, F.P., Barr, B.I.G. and Lydon, F.D., ‘Fracture properties of high strength concrete with varying silica fume content and aggregates’,Cement and Concrete Research 25 (3) (1995) 543–552.

    Article  Google Scholar 

  10. Gopalakrishnan, S., Balasubramanian, K., Krishnamoorthy, T.S. and Bhratkumar, B.H., ‘Investigations on Reinforced High Performance Concrete Beams’, Proc. of Seventh CANMET/ACI Conference, Madras, India,SP-199 (July 2001) 645–663.

    Google Scholar 

  11. Gettu, R., Bažant, Z.P. and Martha, E.K., ‘Fracture properties and brittleness of high strength concrete’,ACI Material Journal 87 (6) (Nov.–Dec. 1990) 608–618.

    Google Scholar 

  12. Rao, G.A. and Raghu Prasad, B.K., ‘Size effect and fracture properties of HPC’, Proc. of the 14th Engineering Mechanics Int. Conference (ASCE), Texas, Austin (May 2000) 21–24.

  13. Rao, G.A. and Raghu Prasad, B.K., ‘Fracture energy and softening behaviour of high strength concrete’,Cement and Concrete Research 32 (2002) 247–252.

    Article  Google Scholar 

  14. RILEM Committee FMT 89, ‘Size-effect method for determining fracture energy and process zone size of concrete’,Mater. Struct 23 (1990) 461–465.

    Article  Google Scholar 

  15. ASTM C-1202, ‘Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration’, Annual book of ASTM Standards,4.02 Concrete and Aggregates (1990) 624–629.

  16. Shah, S.P., Swartz, S.E. and Ouyang, C., ‘Fracture Mechanics of Concrete’ (John Wiley and Sons, New York, 1995).

    Google Scholar 

  17. RILEM Committee FMC 50, ‘Determination of the fracture energy of mortar and concrete by means of the three-point bend tests on notched beams’,Mater. Struct. 18 (1985) 285–290.

    Article  Google Scholar 

  18. Bažant, Z.P., ‘Size-effect in blunt fracture: concrete, rock, metal’,ASCE Jou. of Engineering Mechanics 110 (1984) 518–535.

    Article  Google Scholar 

  19. Bažant, Z.P., ‘Fracture energy of heterogeneous materials and similitude’, in ‘Fracture of Concrete and Rock’, Eds. Shah, S.P. and Swartz, S.E. (Springer-Verlag, New York, 1987) 229–241.

    Google Scholar 

  20. Bažant, Z.P. and Kazemi, M.T., ‘Determination of fracture energy, process zone length and brittleness number from size-effect with application to rock and concrete’,Int. Jou. of Fracture 44 (1990) 111–131.

    Article  Google Scholar 

  21. Tang, T., Bažant, Z.P., Yang, S. and Zollinger, D.G., ‘Variable-notch one-size test method for fracture energy and process zone length,’Engineering Fracture Mechanics 55 (3) (1996) 383–404.

    Article  Google Scholar 

  22. Bolomy, J., ‘Durcissement des Mortiers et bétons’Tech. Suisse Romande (16, 22, & 24) (1927).

  23. Smith, I.A., ‘The Design of Fly ash Concretes’, Proc. of the Institution of Civil Engineers, London36 (1967) 769–790.

    Google Scholar 

  24. Bharatkumar, B.H., ‘Fracture Characteristics of High Performance Concrete (Plain and Reinforced)’, Ph.D. Thesis, Indian Institute of Science, Bangalore, India, 2003.

    Google Scholar 

  25. Aïtcin, P.C., ‘High-Performance, Concrete’ (E&FN SPON, New York, 1998).

    Google Scholar 

  26. Malhotra, V.M., ‘Making concrete ‘greener’ with fly ash’,Concrete International (May 1999) 61–66.

  27. Taylor, P.C. and Tait, R.B., ‘Effect of fly ash on fatigue and fracture properties of hardened cement mortar’,Cement and Concrete Composites,21 (3) (1999) 223–232.

    Article  Google Scholar 

  28. Karihaloo, B.L., ‘Fracture Mechanics and Structural Concrete’, (Longman Scientific and Technical, UK, 1995).

    Google Scholar 

  29. Hillerborg, A., ‘Results of three comparative test series for determining the fracture energy GF of concrete’,Mater. Struct. 18 (107) (1985) 407–412.

    Article  Google Scholar 

  30. Tang, T., Yang, S. and Zollinger, D.G., ‘Determination of fracture energy and process zone length using variable-notch one-size specimens’,ACI Material J. 96 (1) (1999) 3–10.

    Google Scholar 

  31. Bažant, Z.P. and Giraudon, E.B., ‘Statistical prediction of fracture parameters of concrete and implications for choice of testing standard’,Cement and Concrete Research 32 (2002) 529–556.

    Article  Google Scholar 

  32. Bažant, Z.P., Qiang Yu and Goangseup Zi, ‘Choice of standard fracture test for concrete and its statistical evaluation’,International Journal of Fracture 118 (2002) 303–337.

    Article  Google Scholar 

  33. Planas, J., Elices, M. and Guinea, G.V., ‘Measurement of the fracture energy using three-point bend tests: Part-2 Influence of bulk energy dissipation’,Mater. Struct. 25 (1992) 305–312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharatkumar, B.H., Raghuprasad, B.K., Ramachandramurthy, D.S. et al. Effect of fly ash and slag on the fracture characteristics of high performance concrete. Mat. Struct. 38, 63–72 (2005). https://doi.org/10.1007/BF02480576

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480576

Keywords

Navigation