Skip to main content
Log in

Pullout and bond of glass-fibre rods embedded in concrete and cement grout

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Consideration is being given to replacing steel rebars with glass-fibre rods in some specific areas, particularly those in which premature failure due to corrosion has been observed. This paper presents the results of an experimental study of pullout behaviour and bond characteristics of glass-fibre rods embedded in normal and high-strength concretes and in cement grout. The results of the study show that glass-fibre rod bond strength is about 12 MPa and the optimal anchored length approximately 10 times the rod diameter. The average modification factor of top-cast reinforcement was found to be equal to 1.23 and 1.18 for normal and high-strength concrete, respectively. Other considerations, such as bond slip, are also discussed in the paper. Comparisons with steel reinforcement are made whenever appropriate.

Resume

Cet article présente les résultats d’une étude expérimentale qui a trait à l’évaluation des capacités d’adhérence d’une nouvelle tige à base de fibres de verre intoduite pour être utilisée comme armature à béton et comme tige d’ancrage. Plusieurs aspects sont abordés dans l’étude: (i) la résistance d’adhérence, (ii) la longueur optimale de développement d’ancrage, (iii) l’effet de la résistance du béton, (iv) la relation adhérence-glissement et (v) l’influence de la position de la tige d’armature. Il ressort de l’étude que la tige possède des caractéristiques d’adhérence suffisantes pour être utilisée comme armature à béton et tige d’ancrage injectée au coulis de ciment. En particulier, il a été trouvé que la résistance à l’arrachement est de l’ordre de 12 MPa pour les bétons et 4 MPa pour le coulis de ciment. La longueur de développement d’ancrage capable de résister à 700 MPa est de l’ordre de 20d et 30d et celle pour résister à 500 MPa de l’ordre de 10d et 20d, pour les bétons et le coulis respectivement, d étant le diamètre de la tige. Le coefficient de majoration associé à la tige placée en haut est de l’ordre de 1,2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clifton, J. R., Beeghly, H. F. and Mathey, R. G., ‘Protecting reinforcing bars from corrosion with epoxy coatings’,ACI Special Publication ‘Corrosion of Metals in Concrete’, SP-49 (1975) pp. 115–132.

  2. Anti-Corrosion Times (Concrete Reinforcing Steel Institute, 933 N. Plum Grove Road, Shaumburg, Illinois 60173)4(1) (1986).

  3. Treece, R. A. and Jirsa, J. O., ‘Bond strength of epoxy-coated reinforcing bars’,ACI Mater. J. 86(2) (1989) 167–174.

    Google Scholar 

  4. Schell, H. C. and Manning, D. G., ‘Evaluating the performance of cathodic protection systems on reinforced concrete bridge substructure’,Mater. Performance, National Association of Corrosion Engineers, Houston, Texas)24(7) (1985) 18–25.

    Google Scholar 

  5. Chaallal, O., Houde, J., Benmokrane, B. and Aïtcin, P.-C., ‘Use of a new glass-fiber rod as reinforcement for concrete structures’,ACI Special Publication SP-128-32, Vol. I (1991) pp. 515–528.

    Google Scholar 

  6. Chaallal, O., Benmokrane, B. and Aitcin, P.-C., ‘Amélioration des caractéristiques mécaniques et élastiques des tiges en fibres de verre en vue de leur utilisation comme armature de béton’,Technical Report prepared for Pultrall Inc., Thetford Mines, Quebec (Civil Engineering Department, Université de Sherbrooke, Sherbrooke, Québec, 1991).

    Google Scholar 

  7. Benmokrane, B., Chennouf, A. and Ballivy, G., ‘Étude du glissement de tirants d’ancrages cimentés dans le roc en fonction de la contrainte d’adhérence’, in Proceedings of 9th Annual Canadian Tunnelling Conference, Montréal, October 1991, edited by D. E. Gill and R. Corthesy (Tunnelling Association of Canada) pp. 277–288.

  8. ACI 318-89, ‘Building code requirements for reinforced concrete’ (ACI, 1989) p. 353.

  9. CAN3-A23.3-M84, ‘Design of concrete structures for buildings’ (Canadian Standards Association, Rexdale, Ontario, 1984), p. 485.

  10. Clark, A. P., ‘Bond of concrete reinforcing bars’,ACI J. 21(3) (1949) 161–184.

    Google Scholar 

  11. RILEM/CEB/FIP, ‘Essais portant sur l’adhérence des armatures de béton—essai par traction’,Matér. Constr. 6(2) (1973) 102–105.

    Google Scholar 

  12. Eligehausen, R., Popov, E. and Bertero, V. V., ‘Local bond stress-slip relationships of deformed bars under generalized excitations’, Report No. UCB/EERC-83/23 (Earthquake Engineering Research Center, University of California, Berkeley, 1983).

    Google Scholar 

  13. Cleary, D. B. and Ramirez, J. A., ‘Bond strength of epoxycoated reinforcement’,ACI Mater. J. 88(2) (1991) 146–149.

    Google Scholar 

  14. Choi, O. E., Ghaffari, H. H., Darwin, D. and McCabe, S. L., ‘Bond of epoxy-coated reinforcement: bar parameters’,ibid 88(2) (1991) 207–217.

    Google Scholar 

  15. CSA Standard G30.12, ‘Deformed and plain billet steel bars for concrete reinforcement’ (Canadian Standards Association, Rexdale, Ontario, 1977).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaallal, O., Benmokrane, B. Pullout and bond of glass-fibre rods embedded in concrete and cement grout. Materials and Structures 26, 167–175 (1993). https://doi.org/10.1007/BF02472934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472934

Keywords

Navigation