Skip to main content
Log in

DNA polymerase δ and ɛ holoenzymes from calf thymus

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Replication of singly-DNA primed M13 DNA by DNA polymerase (pol) δ completely relies on the simultaneous addition of proliferating cell nuclear antigen (PCNA), replication factor C (RF-C) and replication protein A (RP-A) (orE.coli singlestrand DNA binding protein, SSB). Pol ɛ core alone is able to synthesize the products on singly-primed ssDNA. However, DNA synthesis by pol ɛ was stimulated up to 10-fold upon addition of the three auxiliary proteins PCNA, RF-C and SSB. This stimulation of pol ɛ by PCNA/RF-C/SSB appears to be the superposition of two events: pol, ɛ holoenzyme (pol ɛ, PCNA, RF-C) synthesized longer products than its pol ɛ core counterpart, but elongated less primers. Furthermore, we analyzed the cooperative action of pol α/primase with pol δ or pol ɛ holoenzymes on unprimed M13 DNA. While pol δ displayed higher dNMP incorporation than pol ɛ, when a single primer was preannealed to DNA, pol ɛ was more efficient in the utilization of the primers synthesized by pol α/primase. Under these conditions both longer products and a higher amount of dNMP incorporation was found for pol ɛ holoenzyme, than for pol δ. Our data support the hypothesis of pol δ as the leading and pol ɛ as the second lagging strand replication enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

pol:

DNA polymerase

PCNA:

proliferating cell nuclear antigen

RP-A:

replication protein A

RF-C:

replication factor C

SSB:

single-strand DNA binding protein

ssDNA:

single-strand DNA

SV40:

simian virus 40

T antigen:

SV 40 large tumor antigen

DTT:

dithiothreitol

BSA:

bovine serum albumin

References

  • Alberts BM (1987) Prokaryotic DNA replication mechanisms. Phil Trans R Soc Lond [Biol] 317: 395–420

    CAS  Google Scholar 

  • Burgers PMJ (1988) Mammalian cyclin/PCNA (DNA polymerase δ auxiliary protein) stimulates processive DNA synthesis by yeast DNA polymerase III. Nucleic Acids Res. 16: 6297–6307

    PubMed  CAS  Google Scholar 

  • Burgers PMJ, Bambara RA, Campbell JL Chang LMS, Downey KM, Hübscher U, Lee MYWT, Linn S, So AG, Spadari S (1990) Revised nomenclature for eukaryotic DNA polymerases. Eur J Biochem 191 617–618

    Article  PubMed  CAS  Google Scholar 

  • Burgers PMJ (1991)Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with proliferating cell nuclear antigen and with DNA polymerases δ and ɛ. J Biol Chem 266: 22698–22706

    PubMed  CAS  Google Scholar 

  • Chang LMS, Rafter E, Augl C, Bollum FJ (1984) Purification of a DNA polymerase-DNA primase complex from calf thymus glands. J Biol Chem 259: 14679–14687

    PubMed  CAS  Google Scholar 

  • Chen M, Pan Z-Q, Hurwitz J (1992a) Sequence and expression inEscherichia coli of the 40-kDa subunit of activator 1 (replication factor C) of Hela cells. Proc Natl Acad Sci USA 89: 2516–2520

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Pan Z-Q, Hurwitz J (1992b) Studies of the cloned 37-kDa subunit of activator 1 (replication factor C) of Hela cells. Proc Natl Acad Sci USA 89: 5211–5215

    Article  PubMed  CAS  Google Scholar 

  • Dornreiter I, Erdile LF, Gilbert IU, Winkler D, Kelly TJ, Fanning E (1992) Interaction of DNA polymerase α with cellular replication protein A and SV40 T antigen. EMBO J 11: 769–776

    PubMed  CAS  Google Scholar 

  • Dutta A, Stillman B (1992)cdc2family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J 11: 2189–2199

    PubMed  CAS  Google Scholar 

  • Fien K, Stillman B (1992) Identification of replication factor C fromSaccharomyces cerevisiae: a component of the leading strand DNA replication complex. Mol Cell Biol 12: 155–163

    PubMed  CAS  Google Scholar 

  • Focher F, Gassmann M, Hafkemyer P, Ferrari E, Spadari S, Hübscher U (1989) Calf thymus DNA polymerase δ independent of proliferating cell nuclear antigen (PCNA). Nucleic Acids Res 17: 1805–1821

    PubMed  CAS  Google Scholar 

  • Georgaki A, Strack B, Podust V, Hübscher U (1992) DNA unwinding activity of replication protein A. FEBS Lett 308: 240–244

    Article  PubMed  CAS  Google Scholar 

  • Hübscher U, Thömmes P (1992) DNA polymerase ɛ: in search of a function. Trends Biochem Sci 17: 55–58

    Article  PubMed  Google Scholar 

  • Kenny MK, Lee S-H, Hurwitz J (1989) Multiple functions of human single-stranded-DNA binding protein in simian virus 40 DNA replication: single-strand stabilization and stimulation of DNA polymerases α and δ. Proc Natl Acad Sci USA 86: 9757–9761

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Snyder RO, Wold MS (1992) Binding properties of re-plication protein A from human and yeast cells. Mol Cell Biol 12: 3050–3059

    PubMed  CAS  Google Scholar 

  • Kornberg A, Baker TA (1992) DNA replication. W.H. Freeman, New York

    Google Scholar 

  • Lee S-H, Hurwitz J (1990) Mechanism of elongation of primed DNA by DNA polymerase δ, proliferating cell nuclear antigen, and activator 1. Proc Natl Acad Sci USA 87: 5672–5676

    Article  PubMed  CAS  Google Scholar 

  • Lee S-H, Kwong AD, Pan Z-Q, Hurwitz J (1991a) Studies on the activator 1 protein complex, an accessory factor for proliferating cell nuclear antigen-dependent DNA polymerase δ. J Biol Chem 266: 594–602

    PubMed  CAS  Google Scholar 

  • Lee S-H, Pan Z-Q, Kwong AD, Burgers PMJ, Hurwitz J (1991b) Synthesis of DNA by DNA polymerase ɛin vitro. J Biol Chem 266: 22707–22717

    PubMed  CAS  Google Scholar 

  • Loman TM, Green JM, Beyer RS (1986) Large scale overproduction and rapid purification of theEscherichia coli ssb gene product. Expression of thessb gene under λ PL control. Biochemistry 25: 21–25

    Article  Google Scholar 

  • Maki H, Maki S, Kornberg A (1988) DNA polymerase III holoenzyme ofEscherichia coli. The holoenzyme is an asymmetric dimer with twin active sites. J Biol Chem 263: 6570–6578

    PubMed  CAS  Google Scholar 

  • McHenry CS (1991) DNA polymerase III holoenzyme. Components, structure, and mechanism of a true replicative complex. J Biol Chem 266: 19127–19130

    PubMed  CAS  Google Scholar 

  • Nasheuer H-P, Grosse F (1987) Immunoaffinity-purified DNA polymerase α displays novel properties. Biochemistry 26: 8458–8466

    Article  PubMed  CAS  Google Scholar 

  • Nethanel T, Kaufmann G (1990) Two DNA polymerases may be required for synthesis of the lagging DNA strand of simian virus 40. J Virol 64: 5912–5918

    PubMed  CAS  Google Scholar 

  • Podust VN, Georgaki A, Strack B, Hübscher U (1992) Calf thymus RF-C as an essential component for DNA polymerase δ and ɛ holoenzymes function. Nucleic Acids Res 20: 4159–4165

    PubMed  CAS  Google Scholar 

  • Prelich G, Tan C-K, Kostura M, Mathews MB, So AG, Downey KM, Stillman B (1987) The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replicationin vitro. Nature 326: 517–520

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Thömmes P, Hübscher U (1990) Eukaryotic DNA replication. Enzymes and proteins acting at the fork. Eur J Biochem 194: 699–712

    Article  PubMed  Google Scholar 

  • Tsurimoto T, Stillman B (1989a) Purification of a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA re-plication in vitro. Mol Cell Biol 9: 609–619

    PubMed  CAS  Google Scholar 

  • Tsurimoto T, Stillman B (1989b) Multiple replication factors augment DNA synthesis by the two eukaryotic DNA poly-merases, α and δ. EMBO J. 8: 3883–3889

    PubMed  CAS  Google Scholar 

  • Tsurimoto T, Stillman B (1990) Functions of replication factor C and proliferating-cell nuclear antigen: functional similarity of DNA accessory proteins from human cells and bacteriophage T4. Proc Natl Acad Sci USA 87: 1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Tsurimoto T, Stillman B (1991a) Replication factors required for SV40 DNA replicationin vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J Biol Chem 266: 1950–1960

    PubMed  CAS  Google Scholar 

  • Tsurimoto T, Stillman B (1991b) Replication factors required for SV40 DNA replicationin vitro. II. Switching of DNA polymerase α and δ during initiation of leading and lagging strand synthesis. J Biol Chem 266: 1961–1968

    PubMed  CAS  Google Scholar 

  • Wang TS-F (1991) Eukaryotic DNA polymerases. Annu Rev Biochem 60: 513–552

    Article  PubMed  CAS  Google Scholar 

  • Weiser T, Gassmann M, Thömmes P, Ferrari E, Hafkemeyer P, Hübscher U (1991) Biochemical and functional comparison of DNA polymerases α, δ, and ɛ from calf thymus. J Biol Chem 266: 10420–10428

    PubMed  CAS  Google Scholar 

  • Wold MS, Kelly T (1988) Purification and characterization of replication protein A, a cellular protein required forin vitro replication of simian virus 40 DNA. Proc Natl Acad Sci USA 85: 2523–2527

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On sabbatical leave from Kol'tzov Institute of Developmental Biology, 117334, Moscow, Russia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podust, V., Mikhailov, V., Georgaki, A. et al. DNA polymerase δ and ɛ holoenzymes from calf thymus. Chromosoma 102 (Suppl 1), S133–S141 (1992). https://doi.org/10.1007/BF02451797

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451797

Keywords

Navigation