Skip to main content
Log in

A new cable model formulation based on Green's theorem

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We describe an alternative formulation of the cable equation to model excitation in a cylinder of cardiac fiber. The formulation uses Green's theorem to develop equations for the extracellular and intracellular potential on either side of the excitable membrane, the dynamics of which are described by a Hodgkin-Huxley type model, without assuming that the radial current is zero. These equations are discretized to yield a system of linear equations which are solved at each instant in time. We found no qualitative differences between this approach and the standard cable model for parameters within accepted physiological limits. When the cable diameter is of the same order as the length constant the new formulation takes into account the intracellular potential change in the radial direction and gives an accurate expression of the conduction velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr, R.C.; Ramsey, M., III; Spach, M.S. Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans. Biomed. Eng. BME-24:1–11; 1977.

    CAS  Google Scholar 

  2. Beeler, G.W.; Reuter, H.Reconstruction of the action potential of ventricular myocardial fibers. J. Physiol. 268:177–210; 1977.

    CAS  PubMed  Google Scholar 

  3. Boucher, L. Etude theorique de l'initiation et de la propagation du potentiel d'action cardique. Institut de Génie Biomédical Ecole Polytecnique et Université de Montreal; 1986. Thesis.

  4. Clark, J.W.; Plonsey, R. The extracellular potential fields of the single active nerve fiber in a volume conductor. Biophys. J. 8:842; 1968.

    CAS  PubMed  Google Scholar 

  5. Clark, J.W.; Plonsey R. A mathematical evaluation of the core conductor model. Biophys. J. 6:95–112; 1966.

    CAS  PubMed  Google Scholar 

  6. Cooley, J.W.; Dodge, F.A.: Digital computer solutions for excitation and propagation of the nerve impulse. Biophys. J. 6:99–109; 1966.

    Google Scholar 

  7. Courant, R.; Hilbert, D. Methods of mathematical physics, Volume II. Interscience Publishers; 1962.

  8. Lorente de No R. A study of nerve physiology. Rockefeller Institute Studies 132:398ff; 1947.

    Google Scholar 

  9. Drouhard, J.P.; Roberge, F.A., Revised formulation of the Hodgkin-Huxley representation of the Na+ current in cardiac cells. Comp. and Biomed. Res. 20:333–350; 1987.

    CAS  Google Scholar 

  10. Eisenberg, R.S.; Johnson, E.A. Three-dimensional electrical field problems in physiology. Prog. Biophys. Mol. Biol. 20:3–64; 1970.

    Google Scholar 

  11. Pickard, W.F. A contribution to the electromagnetic theory of the unmyelinated axon. Math. Biosci. 2:111; 1968.

    Article  Google Scholar 

  12. Jack, J.J.B.; Noble, D.; Tsien, R.W.. Electric current flow in excitable cells. Oxford: Clarendon Press; 1975.

    Google Scholar 

  13. Joyner, R.W. Effects of the discrete pattern of electrical coupling on propagation through an electrical syncytium. Circ. Res. 50:192–200; 1982.

    CAS  PubMed  Google Scholar 

  14. Joyner, R.W.; Picone, D.; Veenstra, R. Propagation through electrically coupled cells: effects of regional changes in cell properties. Circ. Res. 53:526–534; 1983.

    CAS  PubMed  Google Scholar 

  15. Plonsey, R. Bioelectric phenomena New York: McGraw-Hill; 1969.

    Google Scholar 

  16. Plonsey, R.; Heppner, D. Considerations of quasis stationarity in electrophysiological systems. Bull. Math. Biophys. 29:657: 1967.

    CAS  PubMed  Google Scholar 

  17. Rattay, F. Modeling excitation of fibers under surface electrodes. IEEE Trans. on Biomed. Eng. BME-35:199–202; 1988.

    CAS  Google Scholar 

  18. Rattay, F. Ways to approximate current-distance relations for electrically stimulated fibers. J. Theor. Biol. 125:339–349; 1987.

    CAS  PubMed  Google Scholar 

  19. Steinhaus, B.M.; Spitzer, K.W.; Isomura, S. Action potential collision in heart tissue-computer simulations and tissue experiments. IEEE Trans. on Biomed. Eng. BME-32:731–742; 1985.

    CAS  Google Scholar 

  20. Stroud, A.H. Approximate calculation of multiple integrals. Englewood Cliffs, NJ: Prentice-Hall; 1971.

    Google Scholar 

  21. Vinet, A.; Victorri, B.; Roberge, F.A.; Drouhard, J.P. Integration methods for action potential reconstruction using Hodgkin-Huxley type models. Comp. Biomed. Res. 18:10–23; 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leon, L.J., Roberge, F.A. A new cable model formulation based on Green's theorem. Ann Biomed Eng 18, 1–17 (1990). https://doi.org/10.1007/BF02368414

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368414

Keywords

Navigation