Skip to main content

Advertisement

Log in

Novel ultrasonic fusion imaging method based on cyclic variation in myocardial backscatter

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Quantitative ultrasonic tissue characterisation of the myocardium based on integrated backscatter (IB) has the potential of becoming an effective method for detecting and evaluating myocardial ischaemia. To facilitate IB-based clinical applications, a new imaging method has been developed that combines the anatomical information of a B-mode image with the contractile performance of a selected myocardial region. To produce such a fusion image, a region of interest (ROI) in a B-mode cardiac image was first selected by the user. Algorithms for detection of the endocardium andepicardium were developed, and the resulting mean distance between the computer-detected curve and the manually traced curve was 0.83 mm for the endocardium and 0.58 mm for the epicardium. The cyclic variation of IB (CVIB) of each myocardial tissue element within the ROI was then calculated over one cardiac cycle. Finally, a grey-scale B-mode image at the end of diastole was displayed as a still image, and the pixels representing the myocardial tissue in the ROI colour-coded according to the corresponding CVIB over the past heart cycle. Both the B-mode image and the colour-coded region were refreshed (up-dated) at the next end-of-diastole. Preliminary results from normal (CVIB=10–12dB) and ischaemic (CVIB=5–7 dB) canine hearts are presented that demonstrate the utility of this new imaging method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barzilai, B., Madaras, E. I., Sobel, B. E., Miller, J. G., andPerez, J. E. (1984): ‘Effects of myocardial contraction on ultrasonic backscatter before and after ischemia’,Am. J. Physiol.,247, pp. H478-H483

    Google Scholar 

  • Bijnens, B., Herregods, M. C., Nuyts, J., Vandeweghe, G., Suetens, P., andVandewerf, F. (1994): ‘Acquisition and processing of the radio-frequency signal in echocardiography: a new global approach’,Ultrasound Med. Biol.,20, pp. 167–176

    Article  Google Scholar 

  • Fitzgerald, P. J., McDaniel, M. D., Rolett, E. L., Strohbehn, J. W., andJames, D. H. (1987): ‘Two-dimensional ultrasonic tissue characterisation: Backscatter power, endocardial wall motion, and their phase relationship for normal, ischemic, and infarcted myocardium’,Circulation,76, pp. 850–859

    Google Scholar 

  • Kass, M., Witkin, A., andTerzopoulos, D. (1987): ‘Snakes: Active contour models’,Int. J. Comput. Vis.,1, pp. 321–331

    Article  Google Scholar 

  • Lancée, C. T., Mastik, F., Rijsterborgh, H., andBom, N. (1988): ‘Myocardial backscatter analysis in animal experiments’,Ultrasonics,26, pp. 155–163

    Article  Google Scholar 

  • Li, X., Bai, J., andHu, G. (1998): ‘Influence of system setting on the myocardial integrated backscatter measurement’,Proc. IEEE EMBS,20, pp. 793–795

    Google Scholar 

  • Lin, L. G., Wu, C. C., Ho, Y. L., Lin, C. W., Chen, W. J., Lee, C. M., Chen, M. F., Liau, C. S., andLee, Y. T. (1998): ‘Ultrasonic tissue characterization for coronary care unit patients with acute myocardial infarction’,Ultrasound Med. Biol.,24, pp. 187–196

    Article  Google Scholar 

  • Mohr, G. A., Vered, Z., Barzilai, B., Perez, J. E., Sobel, B. E., andMiller, J. G. (1989): ‘Automated determination of the magnitude and time delay (‘phase’) of the cardiac cycle dependent variation of myocardial ultrasonic integrated backscatter’,Ultrason. Imag.,11, pp. 245–259

    Article  Google Scholar 

  • Perez, J. E., McGill, J. B., Santiago, J. V., Schechtman, K. B., Waggoner, A. D., Miller, J. G., andSobel, B. E. (1992): ‘Abnormal myocardial acoustic properties in diabetic patients and their correlation with the severity of disease’,J. Am. Coll. Cardiol.,19, pp. 1154–1156

    Google Scholar 

  • Rijsterborgh, H., Mastik, F., Lancee, C. T., van der Steen, A. F., Sassen, L. M., Verdouw, P. D., Roelandt, J., andBom, N. (1990): ‘Ultrasonic myocardial integrated backscatter and myocardial wall thickness in animal experiments’,Ultrasound Med. Biol.,16, pp. 29–36

    Article  Google Scholar 

  • Rijsterborgh, H., van der Steen, A. F., Krams, R., Mastik, F., Lancee, C. T., Verdouw, P. D., Roelandt, J. R., andBom, N. (1996): ‘The relationship between myocardial integrated backscatter, perfusion pressure and wall thickness during isovolumic contraction: an isolated pig heart study’,Ultrasound Med. Biol.,22, pp. 43–52

    Article  Google Scholar 

  • Sagar, K. B., Rhyne, T. L., Wartier, D. C., Pelc, L. E., andWann, L. S. (1987): ‘Intramyocardial variability in integrated backscatter: Effects of coronary occlusion and reperfusion’,Circulation,75, pp. 436–442

    Google Scholar 

  • Thomas III, L. J., Wickline, J. E., Perez, J. F., Sobel, B. E., andMiller, J. G. (1986): ‘A real-time integrated backscatter measurement system for quantitative cardiac tissue characterization’,IEEE Trans. UFFC,33, pp. 27–32

    Google Scholar 

  • Thomas III, L. J., Barzilai, B., Perez, J. E., Lewis, J., Sobel, B. E., Wickline, S. A., andMiller, J. G. (1989): ‘Quantitative real-time imaging of myocardium based on ultrasonic integrated backscatter’,IEEE Trans. UFFC,36, pp. 466–470

    Google Scholar 

  • van der Steen, A. F. W., Rijsterborgh, H., Lancée, C. T., Mastik, F., Krams, R., Verdouw, P. D., Roelandt, J. R., andBom, N. (1997): ‘Influence of data processing on cyclic variation of integrated backscatter and wall thickness in stunned porcine myocardium’,Ultrasound Med. Biol.,23, pp. 405–414

    Article  Google Scholar 

  • Vered, Z., Mohr, G. A., Barzilai, B., Gessler, C. J. Jr., Wickline, S. A., Wear, K. A., Shoup, T. A., Weiss, A. N., Sobel, B. E., Miller, J. G., andPerez, J. E. (1989): ‘Ultrasound integrated backscatter tissue characterization of remote myocardial infarction in human subjects’,J. Am. Coll. Cardiol.,13, pp. 84–91

    Article  Google Scholar 

  • Wagner, R. F., Wear, K. A., Perez, J. E., McGill, J. B., Schechtman, K. B., andMiller, J. G. (1995): ‘Quantitative assessment of myocardial ultrasound tissue characterization through receiver operating characteristic analysis of Bayesian classifiers’,J. Am. Coll. Cardiol.,25, pp. 1706–1711

    Article  Google Scholar 

  • Wickline, S. A., Verdonk, E. D., Wong, A. K., Shepard, R. K., andMiller, J. G. (1992): ‘Structural remodeling of human myocardial tissue infarction: quantification with ultrasonic backscatter’,Circulation,85, pp. 259–268

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J., Jiang, Y., Li, X. et al. Novel ultrasonic fusion imaging method based on cyclic variation in myocardial backscatter. Med Bio Eng Comput 40, 163–167 (2002). https://doi.org/10.1007/BF02348120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02348120

Keywords

Navigation