Skip to main content
Log in

Experimental approach for testing the uncoupling between cardiovascular variability series

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

In cardiovascular variability analysis, the significance of the coupling between two series is commonly assessed by defining a zero level on the magnitude-squared coherence (MSC). Although the use of the conventional value of 0.5 does not consider the dependence of MSC estimates on the analysis parameters, a theoretical threshold Tt is available only for the weighted covariance (WC) estimator. In this study, an experimental threshold for zero coherence Te was derived by a statistical test from the sampling distribution of MSC estimated on completely uncoupled time series. MSC was estimated by the WC method (Parzen window, spectral bandwidth B=0.015, 0.02, 0.025, 0.03 Hz) and by the parametric autoregressive (AR) method (model order M=4, 8, 12, 16), on time series with length L=180, 300, 420, 540s. Te decreased with increasing B and L and with decreasing M (range: 3.11–0.54 for WC estimator, 0.06–0.46 for AR estimator). Values for the typical parameter settings of WC and AR estimation (B=0.025Hz; M=8; L=300s) were, respectively, 0.24 and 0.17. Moreover, Tt was always higher (range: 0.12–0.65) and the results were less dependable than those for Te in defining the zero level of MSC. Thus, with the proposed method, the hypothesis of uncoupling is rejected by accounting for the parameters that affect the confidence of spectral and cross-spectral estimates. The broad applicability of this approach should favour its introduction for assessing the significance of the coupling between cardiovascular variability series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baselli, G., Cerutti, S., Civardi, S., Liberati, D., Lombardi, F., Malliani, A., andPagani, M. (1986): ‘Spectral and cross-spectral analysis of heart rate and arterial blood pressure variability signals’,Comput. Biomed. Res.,19, pp. 520–534

    Article  Google Scholar 

  • Benignus, V. A. (1969): ‘Estimation of the coherence spectrum and its confidence interval using the Fast Fourier Transform’,IEEE Trans. Audio Electroacoust 17, pp. 145–150

    Google Scholar 

  • Blackman, R. B., andTukey, J. W. (1959): ‘The measurement of power spectra from the point of view of communications engineering’, (Dover, New York, 1959)

    Google Scholar 

  • Cadzow, J. A., andSolomon, O. M. (1987): ‘Linear modeling and the coherence function’,IEEE Trans. Acoust, Speech, Signal Process.,35, pp. 19–28

    Article  Google Scholar 

  • Cevese, A., Gulli, G., Polati, E., Gottin, L., andGrasso, R. (2001): ‘Baroreflex and oscillation of heart period at 0.1 Hz studied by alpha-blockade and cross-spectral analysis in healthy humans’,J. Physiol.,531, pp. 235–244

    Article  Google Scholar 

  • Challis, R. E., andKitney, R. I. (1991): ‘Biomedical signal processing (in four parts). Part 3. The power spectrum and coherence function’,Med. Biol. Eng. Comput.,29, pp. 225–241

    Google Scholar 

  • De Boer, R. W., Karemaker, J. M., andStrackee, J. (1985): ‘Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects: a spectral analysis approach’,Med. Biol. Eng. Comput.,23, pp. 352–358

    Google Scholar 

  • Di Rienzo, M., Castiglioni, P., Parati, G., Mancia, G., andPedotti, A. (1996): ‘Effects of sino-aortic denervation on spectral characteristics of blood pressure and pulse interval variability: a wide-band approach’,Med. Biol. Eng. Comput.,34, pp. 133–141

    Google Scholar 

  • Fisher, L. D., andVan Belle, G. (1993): ‘Biostatistics. A methodology for health sciences’ (John Wiley & Sons, New York, 1993)

    Google Scholar 

  • Furlan, R., Porta, A., Costa, F., Tank, J., Baker, L., Schiavi, R., Robertson, D., Malliani, A., andMosqueda-Garcia, R. (2000): ‘Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus’,Circulation,101, pp. 886–892

    Google Scholar 

  • Jenkins, G. M., andWatts, D. G. (1968): ‘Spectral analysis and its applications’ (Holden-Day, San Francisco, 1968)

    Google Scholar 

  • Kay, S. M. (1988): ‘Modern spectral estimation. Theory & application’ (Prentice Hall, Englewood Cliffs, New Jersey, 1988)

    Google Scholar 

  • Koopmans, L. H. (1974): ‘The spectral analysis of time series’ (Academic Press, New York, 1974)

    Google Scholar 

  • Maestri, R., Pinna, G. D., Robbi, E., Gnemmi, M., andLa, Rovere, M. T. (2001): ‘Prognostic value of noninvasive baroreflex sensitivity in chronic heart failure patients’,Comput. in Cardiol.,28, pp. 597–600

    Google Scholar 

  • Mancia, G., Parati, G., Castiglioni, P., andDi Rienzo, M. (1999): ‘Effect of sinoaortic denervation on frequency-domain estimates of baroreflex sensitivity in conscious cats’,Am. J. Physiol.,276, pp. H1987-H1993

    Google Scholar 

  • More, M., Vieira, A., Lee, D. T. L., andKailath, T. (1978): ‘Recursive multichannel maximum entropy spectral estimation’,IEEE Trans. Geosci.,16, pp. 85–94

    Google Scholar 

  • Munakata, M., Imai, Y., Sekino, H., andAbe, K. (1993): ‘Rhythmic oscillations of blood pressure and R-R interval in patients with chronic renal failure’,Med. Biol. Eng. Comput.,31, pp. S115-S122

    Google Scholar 

  • Nollo, G., Porta, A., Faes, L., Del Greco, M., Disertori, M., andRavelli, F. (2001): ‘Causal linear parametric model for baroreflex gain assessment in patients with recent myocardial infarction’,Am. J. Physiol. Heart Circ. Physiol.,280, pp. H1830-H1839

    Google Scholar 

  • Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., Malfattq, G., Dell'Orto, S., Piccaluga, E., Turiel, M., Baselli, G., Cerutti, S., andMalliani, A. (1986): ‘Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog’,Circ. Res.,59, pp. 178–193

    Google Scholar 

  • Pinna, G. D., andMaestri, R. (2001): ‘Reliability of transfer function estimates in cardiovascular variability analysis’,Med. Biol. Eng. Comput.,39, pp. 338–347

    Article  Google Scholar 

  • Pitzalis, M. V., Mastropasqua, F., Massari, F., Passantino, A., Colombo, R., Mannarini, A., Forleo, C., andRizzon, P. (1998): ‘Effect of respiratory rate on the relationships between RR interval and systolic blood pressure fluctuations: a frequency-dependent phenomenon’,Cardiovasc. Res.,38, pp. 332–339

    Article  Google Scholar 

  • Porta, A., Furlan, R., Rimoldi, O., Pagani, M., Malliani, A., andVan De Borne, P. (2002): ‘Quantifying the strength of the linear causal coupling in closed loop interacting cardiovascular variability signals’,Biol. Cybern.,86, pp. 241–251

    Article  Google Scholar 

  • Priestley, M. B. (1981): ‘Spectral analysis and time series’ (Academic Press, London, 1981)

    Google Scholar 

  • Robbe, H. W. J., Mulder, L. J. M., Ruddel, H., Langewitz, W. A., Veldman, J. B. P., andMulder, G. (1987). ‘Assessment of baroreceptor reflex sensitivity by means of spectral analysis’,Hypertension,10, pp. 538–543

    Google Scholar 

  • Saul, J. P., Berger, R. D., Albrecht, P., Stein, S. P., Hui Chen, M., andCohen, R. J. (1991): ‘Transfer function analysis of the circulation: unique insights into cardiovascular regulation’,Am. J. Physiol.,261, pp. H1231-H1245

    Google Scholar 

  • Task Force European Society of Cardiology andNorth American Society of Pacing Electrophysiology (1996): ‘Heart rate variability. Standards of measurement, physiological interpretation, and clinical use’,Eur. Heart. J.,17, pp. 354–381

    Google Scholar 

  • Taylor, J. A., Carr, D. L., Myers, C. W., andEckberg, D. L. (1998): ‘Mechanisms underlying very-low-frequency RR-interval oscillations in humans’,Circulation,98, pp. 547–555

    Google Scholar 

  • Taylor, J. A., andEckberg, D. L. (1996): ‘Fundamental relations between short-term RR interval and arterial pressure oscillations in humans’,Circulation,93, pp. 1527–1532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Faes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faes, L., Nollo, G. & Antolini, R. Experimental approach for testing the uncoupling between cardiovascular variability series. Med. Biol. Eng. Comput. 40, 565–570 (2002). https://doi.org/10.1007/BF02345456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345456

Keywords

Navigation