Skip to main content
Log in

Ab initio studies of methylenecarbene and isoelectronic species

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Optimum equilibrium geometries, energetics, harmonic vibrational frequencies, and infared intensities within the double harmonic approximation are computed for methylenecarbene, CCH2, and isoelectronic species involving silicon and germanium at both the SCF level of theory and the level of second-order perturbation theory using a 6-311G(2df, 2p) basis set or its equivalent. Optimum equilibrium geometries and energetics are also computed at both levels of theory using a smaller 6-311G(d, p) basis set or its equivalent. This investigation of these species is the first to include all of the systems with germanium. In addition, this present work is the first study to includef-type polarization functions in a systematic investigation of the molecular structure and properties of all the molecules in the series. Acetylenic structures are also computed for energy comparisons. Of all the linear isomers, only acetylene is found to be a minimum on the potential energy surface. However, all of the C2v structures are found to be local minima. Both the C2v and linear structures will serve as a basis for future work involving mapping the entire hyperenergy surfaces of all of the molecular systems in the series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fritsch, P.Justus Liebigs Ann. Chem. 1894,279, 319.

    Google Scholar 

  2. Buttenburg, W.Justus Liebigs Ann. Chem. 1894,279, 324.

    Google Scholar 

  3. Wiechell, W.Justus Liebigs Ann. Chem. 1894,279, 337.

    Google Scholar 

  4. Strang, P. J. InMethoden der Organischen Chemie, Regitz, M., Ed.; Georg Thieme Verlag: Stuttgart, 1989; Vol. E 19b, p 84.

    Google Scholar 

  5. Dykstra, C. E.; Schaefer, H. F. IIIJ. Am. Chem. Soc. 1978,100, 1378.

    CAS  Google Scholar 

  6. Osamura, Y.; Schaefer, H. F. III; Gray, S. K.; Miller, W. H.J. Am. Chem. Soc. 1981,103, 1904.

    Article  CAS  Google Scholar 

  7. Krishnan, R.; Frisch, M. J.; Pople, J. A.; Schleyer, P.v.R.Chem. Phys. Lett. 1981,79, 408.

    Article  CAS  Google Scholar 

  8. Carrington, Jr., T.; Hubbard, L. M.; Schaefer, H. F. III; Miller, W. H.J. Chem. Phys. 1984,80, 4347.

    Article  CAS  Google Scholar 

  9. Ervin, K. M.; Ho, J.; Lineberger, W. C.J. Chem. Phys. 1989,91, 5974.

    Article  CAS  Google Scholar 

  10. Gordon, M. S.; Pople, J. A.;J. Am. Chem. Soc. 1981,103, 2945.

    CAS  Google Scholar 

  11. Hopkinson, A. C.; Lien, M. H.; Csizmadia, I. G.Chem. Phys. Lett. 1983,95, 232.

    Article  CAS  Google Scholar 

  12. Hoffmann, M. R.; Yoshioka, Y.; Schaefer, H. F. IIIJ. Am. Chem. Soc. 1983,105, 1084.

    CAS  Google Scholar 

  13. Luke, B. T.; Pople, J. A.; Krogh-Jespersen, M.-B.; Apeloig, Y.; Karni, M.; Chandrasekar, J.; Schleyer, P.v.R.J. Am. Chem. Soc. 1986,108, 270.

    CAS  Google Scholar 

  14. Schoeller, W. W.; Strutwolf, J.J. Mol. Struct. (Theochem) 1994,305, 127.

    Article  Google Scholar 

  15. Binkley, J. S.J. Am. Chem. Soc. 1984,106, 603.

    Article  CAS  Google Scholar 

  16. Lischka, H.; Kökler, H.-J.J. Am. Chem. Soc. 1983,105, 6646.

    Article  CAS  Google Scholar 

  17. Kawai, F.; Noro, T.; Murakami, A.; Ohno, K.Chem. Phys. Leu. 1982,92, 429.

    Google Scholar 

  18. Kalcher, J.; Sax, A.; Olbrich, G.Int. J. Quantum Chem. 1984,25, 543.

    Article  CAS  Google Scholar 

  19. Baird, N. C.Can. J. Chem. 1985,63, 71.

    CAS  Google Scholar 

  20. Srinivas, R.; Sülzle, D.; Schwarz, H.J. Am. Chem. Soc. 1991,113, 52.

    CAS  Google Scholar 

  21. Grev, R. S.; Deleeuw, B. J.; Schaefer, III H. F.Chem. Phys. Lett. 1990,165, 257.

    Article  CAS  Google Scholar 

  22. Greenwood, N. N.; Earnshaw, A.Chemistry of the Elements; Pergamon: Oxford, 1985.

    Google Scholar 

  23. Newman, M. S.; Patrick, T. B.J. Am. Chem. Soc. 1970,92, 4312.

    CAS  Google Scholar 

  24. GAUSSIAN92/DFT, Revision F.3, Frisch, M. J.; Trucks, G. W.; Schlegal, H. B.; Gill, P. M. W.; Johnson, B. G.; Wong, M. W.; Foresman, J. B.; Robb, M. A.; Head-Gordon, M.; Replogle, E. S.; Gomperts, R.; Andes, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. L.; DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A., Gaussian, Inc., Pittsburgh, PA, 1993.

  25. McLean, A. D.; Chandler, G. S.J. Chem. Phys. 1980,72, 5639.

    Article  CAS  Google Scholar 

  26. Huzinaga, S.; Andzelm, J.; Klobukowski, M.; Radzio-Andzelm, E.; Sakai, Y.; Tatewski, H.Gaussian Basis Sets for Molecular Calculations; Elsevier: New York, 1984.

    Google Scholar 

  27. Bartlett, R. J.Ann. Rev. Phys. Chem. 1981,32, 359.

    Article  CAS  Google Scholar 

  28. Cole, S. J.; Bartlett, R.J. J. Chem. Phys. 1987,86, 873.

    CAS  Google Scholar 

  29. Magers, D. H.; Hood, R. B.; Leszczyński, J.Int. J. Quantum Chem.: Quant. Chem. Symp. 1994,28, 579.

    CAS  Google Scholar 

  30. Jemmis, E. D.; Srinivas, G. N.; Leszczyński, J.; Kapp, J.; Korkin, A. A.; Schleyer, P.v.R.J. Am. Chem. Soc., submitted.

  31. Kaupp, M.; Schleyer, P.v.R.J. Am. Chem. Soc. 1993,115, 1061.

    CAS  Google Scholar 

  32. Yamaguchi, Y.; DeLeeuew, B. J.; Richards, Jr. C. A.; Schaefer, H. F. III; Franking, G.J. Am. Chem. Soc. 1994,116, 11922.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brody, H.K., Magers, D.H. & Leszczyński, J. Ab initio studies of methylenecarbene and isoelectronic species. Struct Chem 6, 293–300 (1995). https://doi.org/10.1007/BF02293123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02293123

Key words

Navigation