Skip to main content
Log in

Application of fourth-order finite differences to a baroclinic model of the atmosphere

Anwendung des Differenzenverfahrens vierter Ordnung auf ein baroklines Modell der Atmosphäre

  • Published:
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A Aims and scope Submit manuscript

Summary

Fourth-order difference approximations are implemented in a three-parameter baroclinic quasigeostrophic model of the atmosphere based on a modified version of the Bushby-Whitelam [2] model, currently in use at the Israeli Meteorological Office. The fourth-order accurate numerical forecast on a mesh covering Europe and the Mediterranean regions results in improved locations of low- and high-pressure centres as compared with the second-order forecast. The scheme also yields better estimates of the changes in position and intensity of the synoptic systems. The fourth-order numerical forecast tends, however to lower the values at the pressure centres. This so-called pillow effect still has to be explained.

Zusammenfassung

Differenzenverfahren vierter Ordnung werden auf ein drei-Parameter baroklines, quasigeostrophes Modell der Atmosphäre angewendet. Dieses Atmosphärenmodell, welches zur Zeit am israelischen meteorologischen Büro benutzt wird, ist eine Modifikation des Bushby-Whitelam Modells [2]. Die numerische Vorhersage vierter Ordnung, die sich über Europa und das Mittelmeer erstreckt, ergibt eine bessere Lokalisierung der Hoch- und Tiefdruckzentren, als dies mit einer Vorhersage zweiter, Ordnung möglich wäre. Sie führt auch zu besseren Abschätzungen der Positions- und Intensitätsänderungen des synoptischen Systems. Anderseits aber strebt sie dazu, die Werte in den Druckzentren zu verringern. Dieser sogenannte „pillow effect” muß noch weiter untersucht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arakawa, A.: Computational Design for Long Term Numerical Integration of the Equations of Fluid Motion: Two Dimensional Incompressible Flow. Part 1. J. Comp. Physics,1, 119–143 (1966).

    Google Scholar 

  2. Bushby, F. H., and C. J. Whitelam: A Three Parameter Model of the Atmosphere Suitable for Numeric Integration. Quart. J. Roy. Meteor. Soc.,87, 374–392 (1961).

    Google Scholar 

  3. Gerrity, J. P., Jr., R. D. McPherson, and R. D. Polger: On the Efficient Reduction of Truncation Error in Numerical Weather Prediction Models. Mon. Wea. Rev.,100, 637–643 (1972).

    Google Scholar 

  4. Grammeltvedt, A.: A Survey of Finite Difference Schemes for the Primitive Equations for a Barotropic Fluid. Mon. Wea. Rev.,97, 384–405 (1969).

    Google Scholar 

  5. Hirsch, R. S.: Application of a Fourth-Order Differencing Technique to Fluid Dynamics Problems. Paper presented at SIAM 1974 Fall Meeting, 1974, Alexandria V. A.

  6. Hirsch, R. S.: Higher-Order Accurate Difference Solutions of Fluid Mechanics Problems by a Compact Differencing Technique. J. Comp. Physics,19, 90–109 (1975).

    Google Scholar 

  7. Kálnay-Rivas, E.: Numerical Experiments With Fourth-Order Conservative Finite Differences. G.I.S.S. report. (In preparation.)

  8. Kreiss, H. O., and J. Oliger: Comparison of Accurate Methods for the Integration of Hyperbolic Equations. Tellus,24, 199–215 (1972).

    Google Scholar 

  9. Kreiss, H. O., and J. Oliger: Methods for the Approximate, Solution of Time, Dependent Problems. GARP Publ. no. 10 (1973).

  10. Kurihara, Y.: On the Use of Implicit and Iterative Methods for the Time Integration of the Wave Equation. Mon. Wea. Rev.,93, 33–46 (1965).

    Google Scholar 

  11. Oliger, J.: Fourth-Order Difference Methods for the Initial Boundary Value Problem for Hypberbolic Equations. Maths. of Comp.,38, 15–25 (1974).

    Google Scholar 

  12. Orszag, S. A.: Numerical Simulation of Incompressible Fluids Within Simple Boundaries: Accuracy. J. Fluid Mech.,49, 75–112 (1971).

    Google Scholar 

  13. Orszag, S. A., and M. Israeli: Numerical Simulation of Viscous Incompressible Flow. Ann. Rev. Fluid Dyn., 281–318 (1974).

  14. Roberts, K. V., and N. O. Weiss: Convective Difference Schemes. Maths. Comp.,20, 272–299 (1966).

    Google Scholar 

  15. Sundström, A.: A Truncation Error Reducing Scheme for Balanced Forecast, Models. Mon. Wea. Rev.,97, 150–154 (1969).

    Google Scholar 

  16. Williamson, D. L., and G. L. Browning: Comparison of Grids and Difference Approximations for Numerical Weather Prediction Over a Sphere. J. Appl. Meteor.,12, 264–274 (1973).

    Google Scholar 

  17. Thompson, P. D.: Numerical Weather Analysis and Prediction. New York: Macmillan Company. 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navon, I.M., Alperson, Z. Application of fourth-order finite differences to a baroclinic model of the atmosphere. Arch. Met. Geoph. Biokl. A. 27, 1–19 (1978). https://doi.org/10.1007/BF02246459

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02246459

Keywords

Navigation