Skip to main content
Log in

Differential cholinergic regulation in Alzheimer's patients compared to controls following chronic blockade with scopolamine: a SPECT study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The effects of low-dose chronic scopolamine on measures of cerebral perfusion and muscarinic receptors were tested in eight Alzheimer's disease (AD) subjects and eight elderly controls. Single photon emission computed tomography (SPECT) scans using technetium-labelled hexamethypropylene amine oxide (99mTc-HMPAO) to measure cerebral perfusion before and after chronic scopolamine revealed a significant 12% increase in the normal controls (P<0.01) while the AD subjects showed no significant change. In contrast, the controls showed decreased muscarinic binding as evidenced by123I-quinuclidinyl-4-iodobenzilate (123I-QNB) labelling after chronic drug (−10%,P<0.01) whereas the AD subjects showed increased123I-QNB labelling (+8%,P<0.05). The difference between AD and control subjects was even more marked when the ratio of I-QNB to HMPAO uptake was compared, pointing to a double dissociation in the SPECT results. These data cannot be explained by group differences in cerebral perfusion alone and suggest a differential sensitivity between AD and elderly controls to chronic cholinergic blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • American Psychiatric Association (1987) Diagnostic and statistical manual of mental disorders. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Benton AL, Hamsher KD (1983) Multilingual aphasia examination. Iowa, Iowa City, University of Iowa

    Google Scholar 

  • Blair JR, Spreen O (1989) Predicting premorbid IQ:a revision of the National Adult Reading Test. Clin Neuropsychol 3:129–136

    Google Scholar 

  • Bonte FJ, Ross ED, Chehabi HH, Devous Sr MD (1986) SPECT study of regional cerebral blood flow in Alzheimer disease. J Comput Assist Tomogr 10[4]:579–583

    Google Scholar 

  • Borkowski JG, Benton AL, Spreen O (1967) Word fluency and brain damage. Neuropsychologia 5:135–140

    Google Scholar 

  • Bowen DM, Allen SJ, Benton JS, Goodhardt EA, Haan AM, Palmer NR, Sims NR, Smith CCT, Spillane JA, Esiri MM, Neary D, Snowdeon JS, Wilcock GK, Davison AN (1983) Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer's disease. J Neurochem 41:266–272

    Google Scholar 

  • Caulfield MP, Straughan DW, Cross AJ, Crow T, Birdsall NJM (1982) Cortical muscarinic receptor subtypes and Alzheimer's disease. Lancet 2:1277

    Google Scholar 

  • Chandraseharan SK, Bayne W, Shaw JE (1978) Pharmacokinetics of drug permeation through human skin. J Pharm Sci 67:1370–1374

    Google Scholar 

  • Cohen MB, Graham S, Lake R, Metter EJ, Fitten J, Kulkarni MK, Sevrin R, Yamada L, Chang CC, Woodruff N, Kling AS (1986) Diagnosis of Alzheimer's disease and multiple infarct dementia by tomographic imaging of iodine-123 IMP. J Nucl Med 27:769–774

    Google Scholar 

  • Cohen MB, Fitten J, Lake RR, Perryman KM, Graham LS, Sevrin R (1992) SPECT brain imaging in Alzheimer's disease during treatment with oral tetrahydroaminoacridine and lecithin. Clin Nucl Med 17:312–315

    Google Scholar 

  • Cohen RM, Cohen MR, Weingartner H, Pickar D, Murphy DL (1983) High-dose naloxone affects task performance in normal subjects. Psychiatry Res 8:127–136

    Google Scholar 

  • D'Amato RJ, Zweig RM, Whitehouse PJ, Wenk GL, Singer HS, Mayeux R, Price DL, Snyder SH (1987) Aminergic systems in Alzheimer's disease and Parkinson's disease. Ann Neurol 22:229–236

    Google Scholar 

  • Davies P, Verth AH (1978) Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer's-type dementia brains. Brain Res 138:385–392

    Google Scholar 

  • Davis KL, Thal LJ, Gamzu ER, Davis CS, Woolson RF, Gracon SI, Drachman DA, Schneider LS, Whitehouse PJ, Hoover TM, Morris JC, Kawas CH, Knopman DS, Earl NL, Kumar V, Doody RS (1992) A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer's disease. N Engl J Med 327:1253–1259

    Google Scholar 

  • DeKosky ST, Harbaugh RE, Schmitt FA, Bakay RAE, Chui HC, Knopman DS, Reeder TM, Shetter AG, Senter HJ, Markesbery WR, Group IBS (1992) Cortical biopsy in Alzheimer's disease: diagnostic accuracy and neurochemical, neuropathological, and cognitive correlations. Ann Neurol 32:625–632

    Google Scholar 

  • Deutsch G, Tweedy JR (1987) Cerebral blood flow in severity-matched Alzheimer and multi-infarct patients. Neurology 37:431–438

    Google Scholar 

  • Dubois B, Danze F, Pillon B, Cusimano G, Lhermitte F, Agid Y (1987) Cholinergic-dependent cognitive deficits in Parkinson's disease. Ann Neurol 22:26–30

    Google Scholar 

  • Ebmeier KP, Hunter R, Curran SM, Dougal NJ, Murray CL, Wyper DJ, Patterson J, Hanson MT, Siegfried K, Goodwin GM (1992) Effects of a single dose of the acetylcholinesterase inhibitor velnacrine on recognition memory and regional cerebral blood flow in Alzheimer's disease. Psychopharmacology 108:103–109

    Google Scholar 

  • Estrada C, Hamel E, Krause DN (1983) Biochemical evidence for cholinergic innervation of intracerebral blood vessels. Brain Res 266:261–270

    Google Scholar 

  • Flynn DD, Levy AI, Ferrari-Dileo G, Mash DC (1993) Probing the status of muscarinic receptor subtypes in Alzheimer's disease with subtype-selective antisera. Soc Neurosci Abstr 19:1039

    Google Scholar 

  • Frey KA, Ciliax B, Agranoff BW (1991) Quantitative in vivo receptor binding IV: detection of muscarinic receptor down-regulation by equilibrium and by tracer kinetic methods. Neurochem Res 16[9]:1017–1023

    Google Scholar 

  • Frey KA, Koeppe RA, Mulholland GK, Jewett D, Hichwa R, Ehrenkaufer RLE, Carey JE, Wieland DM, Kuhl DE, Agranoff BW (1992) In vivo muscarinic cholinergic receptor imaging in human brain with [11C] scopolamine and positron emission tomography. J Cereb Blood Flow Metab 12:147–154

    Google Scholar 

  • Garcia-Villalon AG, Krause DN, Ehlert FJ, Duckles SP (1991) Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels. J Pharmacol Exp Ther 258:304–310

    Google Scholar 

  • Geaney DP, Soper N, Shepstone BJ, Cowen PJ (1990) Effect of central cholinergic stimulation on regional cerebral blood flow in Alzheimer disease. Lancet 335:1484–1487

    Google Scholar 

  • Gibson RE, Zeeberg BR, Melograna JM, Wang TF, Ruch J, Braun A, Reba RC (1991) In vivo dissociation kinetics of [3H]quinuclidinyl benzilate: relationship to muscarinic receptor concentration and in vitro kinetics. Brain Res 553:110–116

    Google Scholar 

  • Gibson RE, Moody T, Schneidau TA, Jagoda EM, Reba RC (1992) The in vitro dissociation kinetics of RR-4-[125I]I-QNB is reflected in the in vivo washout of the radioligand from rat brain. Life Sci 50[9]:629–637

    Google Scholar 

  • Gitelman DR, Prohovnik I (1992) Muscarinic and nicotinic contributions to cognitive function and cortical blood flow. Neurobiol Aging 13:313–318

    Google Scholar 

  • Grady CL, Haxby JV, Schlageter NL, Berg G, Rapoport SI (1986) Stability of metabolic and neuropsychological asymmetries in dementia of the Alzheimer type. Neurology 36:1390–1392

    Google Scholar 

  • Gustafson L, Edvinsson L, Dahlgren N, Hagberg B, Risberg J, Rosen I, Ferno H (1987) Intravenous physostigmine treatment of Alzheimer's disease evaluated by psychometric testing, regional cerebral blood flow (rCBF) measurement, and EEG. Psychopharmacology 93:31–35

    Google Scholar 

  • Hachinski VC, Iliff LD, Zilhka E, DuBoulay GH, McAllister VL, Marshall J, Russell RWR, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637

    Google Scholar 

  • Haxby JV, Duara R, Grady CL, Cutler NR, Rapoport SI (1985) Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer's disease. J Cereb Blood Flow Metab 5:193–200

    Google Scholar 

  • Hoffman WE, Albrecht RF, Miletich DJ, Hagen TJ, Cook JM (1986) Cerebrovascular and cerebral metabolic effects of physostigmine, midazolam, and a benzodiazepine antagonist. Anesth Analg 65:639–644

    Google Scholar 

  • Holman BL, Gibson RE, Hill TC, Eckelman WC, Albert M, Reba RC (1985) Muscarinic acetylcholine receptors in Alzheimer's disease. JAMA 254:3063–3066

    Google Scholar 

  • Honer WG, Prohovnik I, Smith G, Lucas LR (1988) Scopolamine reduces frontal cortex perfusion. J Cereb Blood Flow Metab 8:635–641

    Google Scholar 

  • Huff FJ, Mickel SF, Corkin S, Growdon JH (1988) Cognitive functions affected by scopolamine in Alzheimer's disease and normal aging. Drug Dev Res 12:271–278

    Google Scholar 

  • Hunter R, Wyper DJ, Patterson J, Hansen MT, Goodwin GM (1991) Cerebral pharmacodynamics of physostigmine in Alzheimer's disease investigated using single-photon computerised tomography. Br J Psychiatry 158:351–357

    Google Scholar 

  • Kaplan EF, Goodglass H, Weintraub S (1983) The Boston naming test. Lea & Febiger, Philadelphia

    Google Scholar 

  • Kellar KJ, Whitehouse PJ, Martino-Barrows AM, Marcus K, Price DL (1987) Muscarinic and nicotinic cholinergic binding sites in Alzheimer's disease cerebral cortex. Brain Res 436:62–68

    Google Scholar 

  • London ED, Waller SB (1986) Relationships between choline acetyl-transferase and muscarinic binding in aging rodent brain and in Alzheimer's disease. In: Hanin I (ed) Dynamics of cholinergic function. Plenum, New York, pp 215–224

    Google Scholar 

  • Majocha R, Baldessarini RJ (1984) Tolerance to an anticholinergic agent paralleled by increased binding to muscarinic receptors in rat brain and increased behavioral response to a centrally active cholinomimetic. Life Sci 35:2247–2255

    Google Scholar 

  • Mash DC, White WF, Mesulam MM (1985) Distribution of muscarinic receptor subtypes within architectonic subregions of the primate cerebral cortex. J Comp Neurol 278:265–274

    Google Scholar 

  • Matsui T, Hirano A (1978) An atlas of the human brain for computerized tomography. Igaku-Shoin, Tokyo

    Google Scholar 

  • Mattis S (1976) Mental status examination for organic mental syndrome in the elderly patient. In: Bellak L, Karasu TB (ed) Geriatric psychiatry. Grune & Stratton, New York, pp 77–121

    Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939–944

    Google Scholar 

  • Messa C, Perani D, Lucignani G, Zenorini A, Zito F, Rizzo G, Grassi F, Del Sole A, Franceschi M, Gilardi MC, Fazio F (1994) High-resolution technetium-99m-HMPAO SPECT in patients with probable Alzheimer's disease: comparison with fluorine-18-FDG PET. J Nucl Med 35:210–216

    Google Scholar 

  • Molchan SE, Matochik JA, Zametkin AJ, Szymanski HV, Cantillon M, Cohen RM, Sunderland T (1994) A double FDG/PET study of the effects of scopolamine in older adults. Neuropsychopharmacology 10:191–198

    Google Scholar 

  • Neary D, Snowden JS, Shields RA, Burjan AWI, Northen B, Macdermott N, Prescott MC, Testa HJ (1987) Single photon emission tomography using99mTc-HM-PAO in the investigation of dementia. J Neurol Neurosurg Psychiatry 50:1101–1109

    Google Scholar 

  • Nelson HE, O'Connell A (1978) Dementia: the estimation of premorbid intelligence levels using the new adult reading test. Cortex 14:234–244

    Google Scholar 

  • Newcombe F (1969) Missile wounds of the brain. Oxford University Press, London

    Google Scholar 

  • Nordberg A, Larsson C, Adolfsson R, Alafuzoff I, Winblad B (1983) Muscarinic receptor compensation in hippocampus of Alzheimer patients. J Neural Transmission 56:13–19

    Google Scholar 

  • Nordberg A, Alafuzoff I, Winblad B (1986) Muscarinic receptor subtypes in hippocampus in Alzheimer's disease and mixed dementia type. Neurosci Lett 70:160–164

    Google Scholar 

  • Nordberg A, Nyberg P, Adolfsson R, Winblad B (1987) Cholinergic topography in Alzheimer brains: a comparison with changes in the monoaminergic profile. J Neural Transm 69:19–32

    Google Scholar 

  • Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1:189

    Google Scholar 

  • Reinikainen KJ, Riekkinen PJ, Halonen T, Laakso M (1987) Decreased muscarinic receptor binding in cerebral cortex and hippocampus in Alzheimer's disease. Life Sci 41:453–461

    Google Scholar 

  • Reisine TD, Yamamura HI, Bird ED, Spokes E, Enna SJ (1978) Pre- and postsynaptic neurochemical alterations in Alzheimer's disease. Brain Res 159:477–481

    Google Scholar 

  • Rinne JO, Laakso K, Lonnberg P (1985) Brain muscarinic receptors in senile dementia. Brain Res 336:19–25

    Google Scholar 

  • Rodriguez M, Martin L, Santana C (1994) Ontogenic development of brain asymmetry in dopaminergic neurons. Brain Res Bull 33:163–171

    Google Scholar 

  • Sato A, Sato Y (1992) Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. Neurosci Res 14:242–274

    Google Scholar 

  • Sawada Y, Hiraga S, Francis B, Patlak C, Pettigrew K, Ito K, Owens RE, Gibson R, Reba R, Eckelman W, Larson S, Blasberg RG (1990) Kinetic analysis of 3-quinuclinadinyl 4-[125I]iodobenzilate transport and specific binding to muscarinic acetylcholine receptor in rat brain in vivo: implications for human studies. J Cereb Blood Flow Metab 6:781–807

    Google Scholar 

  • Scremin OU, Sonnenschein RR, Rubinstein EH (1982) Cholinergic cerebral vasodilatation in the rabbit: absence of concomitant metabolic activation. J Cereb Blood Flow Metab 2:241–247

    Google Scholar 

  • Shimohama S, Taniguchi T, Fjuiwara M, Kameyama M (1986) Changes in nicotinic and muscarinic cholinergic receptors in Alzheimer-type dementia. J Neurochem 46:288–293

    Google Scholar 

  • Skimoyama M, Kito S, Itoga E, Kishida T, Nanba K (1982) Binding experiments of m uscarinic acetylcholine and dopamine receptors in human brains with emphasis on a case of striatonigral degeneration. Jpn J Pharmacol 32:1157–1166

    Google Scholar 

  • Smith CJ, Perry EK, Perry RH (1988) Muscarinic cholinergic receptor subtypes in hippocampus in human cognitive disorders. J Neurochem 50:847–856

    Google Scholar 

  • Snodgrass JG, Vanderwart M (1980) A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J Exp Psychol learn Mem Cogn 6:174–215

    Google Scholar 

  • Sunderland T, Tariot PN, Cohen RM, Weingartner H, Mueller EA, Murphy DL (1987) Anticholinergic sensitivity in patients with dementia of the Alzheimer type and age-matched controls: a dose-response study. Arch Gen Psychiatry 44:418–426

    Google Scholar 

  • Sunderland T, Molchan SE, Vitiello B, Martinez R, Martin A (1991) Functional cholinergic receptor sensitivity: The role of drug probes. In: Becker RE, Giacobini E (ed) Cholinergic basis for Alzheimer therapy. Birkhauser, Boston, pp 170–182

    Google Scholar 

  • Takeyasu K, Uchida S, Noguchi Y, Fujita N, Saito K, Hata F, Yoshida H (1979) Changes in brain muscarinic acetylcholine receptors and behavioral responses to atropine and apomorphine in chronic atropine-treated rats. Life Sci 25:585–592

    Google Scholar 

  • Terry RD (1993) Synaptic plasticity in Alzheimer's disease. [editorial; comment] Ann Neurol 34:321

    Google Scholar 

  • Van Kammen DP, Murphy DL (1975) Attenuation of the euphoriant and activating effects ofd-andl-amphetamine by lithium carbonate treatment. Psychopharmacologia 44:215–224

    Google Scholar 

  • Wagerle LC, Busija DW (1989) Cholinergic mechanisms in the cerebral circulation of the newborn piglet: effect of inhibitors of arachidonic acid metabolism. Circ Res 64:1030–1036

    Google Scholar 

  • Waller SB, Ball MJ, Reynolds MA, London ED (1986) Muscarinic binding and choline acetyltransferase in postmortem brain of demented patients. Can J Neurol Sci 13:528–532

    Google Scholar 

  • Weinberger DR, Gibson R, Coppola R, Jones DW, Molchan SE, Sunderland T, Zeeberg B, Berman KF, Reba RC (1991) The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia: a controlled study with 123-IQNB and single photon emission computed tomography. Arch Neurol 48:169–176

    Google Scholar 

  • Weingartner H, Grafman J, Boutelle W, Kaye W, Martin PR (1983) Forms of memory failure. Science 221:380–382

    Google Scholar 

  • White P, Hilley CR, Goodhardt MJ, Carrasco LH, Keet JP, Williams IE, Bowen DM (1977) Neocortical cholinergic neurons in elderly people. Lancet 1:668–671

    Google Scholar 

  • Whitehouse PJ, Au KS (1986) Cholinergic receptors in aging and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 10:665–676

    Google Scholar 

  • Wilson K, Bowen D, Francis P, Tyrrell P (1991) Effect of central cholinergic stimulation on regional cerebral blood flow in Alzheimer's disease. Br J Psychiatry 158:558–562

    Google Scholar 

  • Zeeberg BR, Kim HJ, Reba RC (1992) Pharmacokinetic simulations of SPECT quantitation of the M2 muscarinic neuroreceptor subtype in disease states using radioiodinated (R,R)-4IQNB. Life Sci 51[9]:661–670

    Google Scholar 

  • Zubenko GS, Moossy J, Hanin I, Martinez AJ, Rao GR, Kopp U (1988) Bilateral symmetry of cholinergic deficits in Alzheimer's disease. Arch Neurol 45:255–259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunderland, T., Esposito, G., Molchan, S.E. et al. Differential cholinergic regulation in Alzheimer's patients compared to controls following chronic blockade with scopolamine: a SPECT study. Psychopharmacology 121, 231–241 (1995). https://doi.org/10.1007/BF02245634

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245634

Key words

Navigation