Skip to main content

Advertisement

Log in

The performance of the octopus circulatory system: A triumph of engineering over design

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Despite the very considerable difficulties presented by the basic molluscan anatomy and the possession of a blood pigment with an oxygen carrying capacity that never exceeds 4.5 vols%, the cephalopod circulatory system contrives to deliver oxygen at a rate fully comparable with that of an active fish. This is achieved by adding accessory pumps to push blood through the gills, by a multiplicity of pulsatile veins and by raising the systemic blood pressure considerably above the levels found in other molluscs. Detailed control of blood distribution is a necessity in a system where the peripheral resistences may be expected to change dramatically when the animal starts to move and large parts of the central nervous system are apparently dedicated to this task. In this account we have reviewed blood pressure and flow at rest and in exercise. We have further examined the evidence which indicates how the animals modulate the cardiac output, drawing attention to the very different response found in cephalopods and the higher vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrowicz, J.S., A pulsating ganglion in the Octopoda. Proc. R. Soc. B.157 (1963) 562–573.

    Google Scholar 

  2. Alexandrowicz, J.S., The neurosecretory system of the vena cava in Cephalopoda. I.Eledone cirrhosa. J. mar. biol. Ass. U.K.44 (1964) 111–132.

    Article  Google Scholar 

  3. Alexandrowicz, J. S., The neurosecretory system of the vena cava in Cephalopoda. II.Sepia officinalis andOctopus vulgaris. J. mar. biol. Ass. U.K.45 (1965) 209–228.

    Article  Google Scholar 

  4. Barber, V.C., and Graziadei, P., The fine structure of cephalopod blood vessels. III. Vessel innervation. Z. Zellforsch. mikrosk. Anat. (1967) 162–174.

  5. Bourne, G.B., Blood pressure in the squid,Loligo pealei. Comp. Biochem. Physiol.72A (1982) 23–27.

    Article  Google Scholar 

  6. Bourne, G.B., Redmond, J.R., and Johansen, K.,Nautilus pompilius; branchial circulation enhanced by an auxiliary pumping mechanism. Experientia33 (1977) 1453.

    Article  Google Scholar 

  7. Bourne, G.B., Redmond, J.R., and Johansen, K., Some aspects of haemodynamics inNautilus pompilius. J. exp. Zool.205 (1978) 63–70.

    Article  Google Scholar 

  8. Boyle, P.R., and Knobloch, D., On growth of the octopusEledone cirrhosa. J. mar. biol. Ass. U.K.62 (1982) 277–296.

    Article  Google Scholar 

  9. Brett, J.R., The relation of size to rate of oxygen consumption and sustained swimming speed of Sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Bd Can.22 (1965) 1491–1501.

    Article  Google Scholar 

  10. Browning, J., The density and dimensions of exchange vessels inOctopus pallidus. J. Zool. Lond.196 (1965) 569–579.

    Article  Google Scholar 

  11. Driedzic, W.R., Contractile performance of cephalopod hearts under anoxic conditions. J. exp. Biol.117 (1985) 471–474.

    Article  Google Scholar 

  12. Foti, L., Genoino, I.T., and Agnisolo, G.,In vitro cardiac performance inOctopus vulgaris (Lam). Comp. Biochem. Physiol.82C (1909) 483–488.

    Google Scholar 

  13. Fredericq, H., and Bacq, Z.M., Analyse quantitative des effects cardiaques de la stimulation du nerf vicéral des céphalopodes. Archs int. Physiol.49 (1939) 490–496.

    CAS  Google Scholar 

  14. Fry, H. J. B., The influence of the visceral nerves on the heart of cephalopods. J. Physiol. Lond.39 (1909) 184–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gosline, J.M., and Shadwick, R.E., The biomechanics of the arteries ofNautilus, Nototodarus andSepia. Pacific Science36 (1982) 283–296.

    Google Scholar 

  16. Gosline, J.M., and Shadwick, R.E., The role of elastic energy storage mechanisms in swimming: an analysis of muscle elasticity in escape jetting by the squidLoligo opalescens. Can. J. Zool.61 (1983) 1421–1431.

    Article  Google Scholar 

  17. Gray, E. G., Electron microscopy of the glio-vascular organisation of the brain ofOctopus. Phil. Trans. R. Soc. B255 (1969) 13–32.

    Google Scholar 

  18. Hill, R.B., and Welsh, J.H., Heart circulation and blood cells, in: Physiology of the Mollusca, vol. 2, pp. 126–174. Eds K. M. Wilbur and C. M. Yonge. Academic Press, New York 1966.

    Google Scholar 

  19. Houlihan, D.F., Duthie, G., Smith, P.J., Wells, M.J., and Wells, J., Ventilation and circulation during exercise inOctopus vulgaris. J. comp. Physiol. B156 (1986) 683–689.

    Article  Google Scholar 

  20. Houlihan, D.F., Innes, A.J., Wells, M.J., and Wells, J., Oxygen consumption and blood gases ofOctopus vulgaris in hypoxic conditions. J. comp. Physiol.148 (1982) 35–40.

    Article  Google Scholar 

  21. Johansen, K., Cardiac output in the large cephalopodO. dofleini. J. exp. Biol.42 (1965) 475–480.

    Article  CAS  PubMed  Google Scholar 

  22. Johansen, K., Brix, O., and Lykkeboe, G., Blood gas transport in the cephalopod,Sepia officinalis. J. exp. Biol.99 (1982) 331–338.

    Article  Google Scholar 

  23. Johansen, K., and Martin, A.W., Circulation in the cephalopod,Octopus dofleini, Comp. Biochem. Physiol.5 (1962) 161–176.

    Article  CAS  PubMed  Google Scholar 

  24. Jones, H.D., The circulatory systems of gastropods and bivalves, in: The Mollusca, vol. 5 (II), pp. 189–238. Eds A.S.M. Saleuddin and K.M. Wilbur, Academic Press, New York 1983.

    Google Scholar 

  25. Kier, W.A., The functional morphology of the musculature of squid (Loliginidae) arms and tentacles. J. Morph.172 (1982) 179–192.

    Article  PubMed  Google Scholar 

  26. Koch, U.T., and Koester, J., Time sharing of heart power: Cardiovascular adaptations to food-arousal inAplysia. J. comp. Physiol.149 (1982) 31–42.

    Article  Google Scholar 

  27. Kruta, V., Effects de l'excitation des nerfs viscéraux sur l'activité cardiaque chez les céphalopodes. C.r. séanc. Soc. Biol.122 (1936) 582–585.

    Google Scholar 

  28. Kuwasawa, K., Effects of ACh and IJPs on the av valve and ventricle ofDolabella auricularia. Am. Zool.19 (1979) 129–143.

    Article  CAS  Google Scholar 

  29. Maginnis, L.A., and Wells, M.J., The oxygen consumption ofOctopus cyanea. J. exp. Biol.51 (1969) 607–613.

    Article  Google Scholar 

  30. Martin, A.W., and Aldrich, F.A., Comparison of hearts and branchial heart appendages in some Cephalopods. Can. J. Zool.48 (1970) 751–756.

    Article  Google Scholar 

  31. Mislin, H., Nachweis einer reflektorischen Regulation des peripheren Kreislaufs der Cephalopoden. Experientia6 (1950) 467–468.

    Article  CAS  PubMed  Google Scholar 

  32. Mislin, H., and Kauffmann, M., Der aktive Gefässpuls in der Arm-Schirmhaut der Cephalopoden. Revue suisse Zool.55 (1948) 267–271.

    Article  Google Scholar 

  33. O'Dor, R.K., Respiratory metabolism and swimming performance of the squid,Lologo opalescens. Can. J. Fish. aquat. Sci.39 (1982) 580–587.

    Article  Google Scholar 

  34. O'Dor, R.K., and Wells, M.J., Circulation time, blood reserves and extracellular space in a cephalopod. J. exp. Biol.11 (1984) 461–464.

    Article  Google Scholar 

  35. Ranson, W.B., On the cardiac rhythm of invertebrates. J. Physiol.5 (1884) 262–341.

    Google Scholar 

  36. Read, K.R.H., Molluscan haemoglobin and myoglobin, in: Physiology of Mollusca, chap. 6, vol. 2, pp. 209–232. Eds K. M. Wilbur and C. M. Yonge. Academic Press, New York 1966.

    Chapter  Google Scholar 

  37. Santer, R.M., Greer Walker, M.G., Emerson, L., and Witthames, P.R., On the morphology of the heart ventricle in marine teleost fish (Teleostei) Comp. Biochem. Physiol.76A (1983) 453–457.

    Article  Google Scholar 

  38. Shadwick, R.E., and Gosline, J.M., Elastic arteries in invertebrates: mechanics of the octopus aorta. Science213 (1981) 759–761.

    Article  CAS  PubMed  Google Scholar 

  39. Shadwick, R.E., and Gosline, J.M., Physical and chemical properties of rubber-like elastic fibres from the octopus aorta. J. exp. Biol.114 (1985a) 239–257.

    Article  CAS  Google Scholar 

  40. Shadwick, R.E., and Gosline, J.M., Mechanical properties of the octopus aorta. J. exp. Biol.114 (1985b) 259–284.

    Article  Google Scholar 

  41. Shadwick, R.E., Gosline, J.M., and Milsom, W.K., Arterial haemodynamics in the cephalopod mollusc,Octopus dofleini. J. exp. Biol. (1987) in press.

  42. Skramlik, E. von, Über den Kreislauf bei den Weichtieren. Ergbn. Biol.18 (1941) 88–286.

    Google Scholar 

  43. Smith, L.S., The role of venous peristalsis in the arm circulation ofOctopus dofleini. Comp. Biochem. Physiol.7 (1962) 269–275,.

    Article  CAS  PubMed  Google Scholar 

  44. Smith, P.J.S., Studies on the circulatory organs of the octopus,Eledone cirrhosa (Lam.). Ph. D. Thesis, University of Aberdeen, Scotland 1979.

    Google Scholar 

  45. Smith, P.J.S., The role of venous pressure in regulation of output from the heart of the octopus,Eledone cirrhosa (Lam.). J. exp. Biol.93 (1981a) 243–255.

    Article  Google Scholar 

  46. Smith, P.J.S., The octopod ventricular cardiogram. Comp. Biochem. Physiol.70A (1981b) 103–105.

    Article  Google Scholar 

  47. Smith, P.J.S., The contribution of the branchial heart to the accessory branchial pump in the Octopoda. J. exp. Biol.98 (1982) 229–237.

    Article  Google Scholar 

  48. Smith, P.J.S., Molluscan circulation: Haemodynamics and the heart, in: Circulation, Respiration and Metabolism, pp. 344–355. Ed. R. Gilles, Springer-Verlag, Berlin-Heidelberg 1985a.

    Chapter  Google Scholar 

  49. Smith, P.J.S., Cardiac performance in response to loading pressures for two molluscan species,Busycon canaliculatum (L.) (Gastropoda) andMercenaria mercenaria (L.) (Bivalvia). J. exp. Biol.119 (1985b) 301–320.

    Article  Google Scholar 

  50. Smith, P.J.S., Cardiac output in the Mollusca: Scope and regulation. Experientia (1987) submitted.

  51. Smith, P.J.S., and Boyle, P.R., The cardiac innervation ofEledone cirrhosa (Lamarck) (Mollusca: Cephalopoda). Phil. Trans R. Soc. (Lond.)B300 (1983) 493–511.

    CAS  Google Scholar 

  52. Smith, P.J.S., Duthie, G.G., Wells, M.J., and Houlihan, D.F., Continuous recording of arterial blood PO2 inOctopus vulgaris during progressive hypoxia and movement. J. exp. Biol.117 (1985) 475–479.

    Article  Google Scholar 

  53. Smith, P.J.S., and Hill, R.B., Cardiac performance in response to loading pressures and perfusion with 5-hydroxytryptamine in the isolated heart ofBusycon canaliculatum (Gastropoda, Prosobranchia). J. exp. Biol.123 (1986) 243–253.

    Article  CAS  Google Scholar 

  54. Smith, P.J.S., and Hill, R.B. Modulation of output from an isolated gastropod heart: Effects of acetylcholine and FMRFamide. J. exp. Biol. (1987) in press.

  55. Ward, D.V., and Wainwright, S.A., Locomotory aspects of squid mantle structure. J. Zool.167 (1972) 437–449.

    Article  Google Scholar 

  56. Webber, D.M., and O'Dor, R.K., Respiration and swimming performance of short-finned squid (Illex illecebrosus). NAFO Sci. coun. Stud.9 (1985) 133–138.

    Google Scholar 

  57. Wells, M.J., The heartbeat ofOctopus vulgaris. J. exp. Biol.78 (1979) 87–104.

    Article  Google Scholar 

  58. Wells, M.J., Nervous control of the heartbeat inOctopus. J. exp. Biol.85 (1980) 111–128.

    Article  CAS  PubMed  Google Scholar 

  59. Wells, M.J., Circulation in cephalopods, in: The Mollusca, vol. 5, pp. 239–290. Eds K.M. Wilbur and A.S.M., Saleuddin. Academic Press, New York 1983a.

    Chapter  Google Scholar 

  60. Wells, M.J., Hormones and the circulation inOctopus, in: Molluscan Neuro-Endocrinology, pp. 221–228. Eds J. Lever and H.H. Boer. North Holland, Amsterdam 1983b.

    Google Scholar 

  61. Wells, M.J., Duthie, G.G. Houlihan, D.F., Smith, P.J.S., and Wells, J., Blood flow and pressure changes in exercising octopuses. J. exp. Biol. (1987) in press.

  62. Wells, M.J., and Mangold, K., The effects of extracts from neurosecretory cells in the anterior vena cava and pharyngo-ophthalmic vein upon the hearts of intact free-moving octopuses. J. exp. Biol.84 (1980) 319–334.

    Article  CAS  PubMed  Google Scholar 

  63. Wells, M.J., O'Dor, R.K., Mangold, K., and Wells, J., Diurnal changes in activity and metabolic rate inOctopus vulgaris. Mar. Behav. Physiol.9 (1983a) 275–287.

    Article  Google Scholar 

  64. Wells, M.J., O'Dor, R.K., Mangold, K., and Wells, J., Oxygen consumption in movement byOctopus. Mar. Behav. Physiol.9 (1983b) 289–303.

    Article  Google Scholar 

  65. Wells, M.J., O'Dor, R.K., Mangold, K., and Wells, J., Feeding and metabolic rate inOctopus. Mar. Behav. Physiol.9 (1983c) 305–317.

    Article  Google Scholar 

  66. Wells, M.J., and Smith, P.J.S., The ventilation cycle inOctopus. J. exp. Biol.116 (1985) 375–383.

    Article  Google Scholar 

  67. Wells, M.J., and Wells, J., The circulatory response to acute hypoxia inOctopus. J. exp. Biol.104 (1983) 59–71.

    Article  Google Scholar 

  68. Wells, M.J., and Wells, J., Ventilation frequencies and stroke volumes in acute hypoxia inOctopus. J. exp. Biol.118 (1986a) 445–448.

    Article  Google Scholar 

  69. Wells, M.J., and Wells, J., Blood flow in acute hypoxia in an cephalopod. J. exp. Biol.122 (1986b) 345–353.

    Article  Google Scholar 

  70. Young, J.Z., The anatomy of the brain ofOctopus. Clarendon Press, Oxford 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, M.J., Smith, P.J.S. The performance of the octopus circulatory system: A triumph of engineering over design. Experientia 43, 487–499 (1987). https://doi.org/10.1007/BF02143577

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02143577

Key words

Navigation