Skip to main content
Log in

Examination of protein sequence homologies: I. ElevenEscherichia coli L7/L12-type ribosomal “A” protein sequences from eubacteria and chloroplast

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Seven complete and four partial sequences ofEscherichia coli L7/L12-type ribosomal “A” proteins obtained from various bacteria (E. coli, Bacillus subtilis, Micrococcus lysodeikticus, Rhodopseudomonas spheroides, Desulfovibrio vulgaris, Streptomyces griseus, Bacillus stearothermophilus, Clostridium pasteurianum, Arthrobacter glacialis, andVibrio costicola) and spinach chloroplast have been reexamined using a computer program that searches for homologous tertiary structures. Comparison matrices for the sequences show that they match the sequence ofE. coli L7 (EL7) if one assumes the insertion or deletion of certain residues at sites corresponding to residues 1, 38, 49, and 92 of EL7. That two additional insertion points are found only in the spinach chloroplast protein suggests that the chloroplast protein probably diverged from the bacterial forms. Further phylogenetic relationships among these 11 prokaryote-type “A” proteins are discussed with respect to average correlation coefficients computed, taking into account the existence of the gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker WC, Ketcham LK, Dayhoff MO (1978) A comprehensive examination of protein sequences for evidence of internal gene duplication. J Mol Evol 10:265–281

    Article  PubMed  Google Scholar 

  • Bartsch M, Kimura M, Subramanian A (1982) Purification, primary structure, and homology relationships of a chloroplast ribosomal protein. Proc Natl Acad Sci USA 79:6871–6875

    Google Scholar 

  • Dayhoff MO (ed) (1972) Atlas of protein sequence and structure, vol. 5. National Biomedical Research Foundation, Washington DC

    Google Scholar 

  • Dayhoff MO (ed) (1973) Atlas of protein sequence and structure, vol 5, suppl 1. National Biomedical Research Foundation, Washington DC

    Google Scholar 

  • Doolittle RF (1981) Similar amino acid sequences: chance or common ancestry? Science 214:149–159

    PubMed  Google Scholar 

  • Hori H, Osawa S (1979) Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species. Proc Natl Acad Sci USA 76:381–385

    PubMed  Google Scholar 

  • Hori H, Itoh T, Osawa S (1982) The phylogenic structure of the metabacteria. Zentralbl Bakteriol Mikrobiol Hyg [C] 3: 18–31

    Google Scholar 

  • Itoh T (1980) Primary structure of yeast acidic ribosomal protein YPA1. FEBS Lett 114:119–123

    Article  PubMed  Google Scholar 

  • Itoh T (1981) Primary structure of an acidic ribosomal protein fromMicrococcus lysodeikticus. FEBS Lett 127:67–70

    Article  PubMed  Google Scholar 

  • Itoh T, Higo K (1983) Complete amino acid sequence of an L7/L12-type ribosomal protein fromRhodopseudomonas spheroides. Biochim Biophys Acta 744:105–109

    Google Scholar 

  • Itoh T, Otaka E (1984) Complete amino acid sequence of an L7/L12-type ribosomal protein fromDesulfovibrio vulgaris, Miyazaki. Biochim Biophys Acta 789:229–233

    Google Scholar 

  • Itoh T, Wittmann-Liebold B (1978) The primary structure ofBacillus subtilis acidic ribosomal protein B-L9 and its comparison withEscherichia coli proteins L7/L12. FEBS Lett 96: 392–394

    Article  PubMed  Google Scholar 

  • Itoh T, Sugiyama M, Higo K (1982) The primary structure of an acidic ribosomal protein fromStreptomyces griseus. Biochim Biophys Acta 701:164–172

    Google Scholar 

  • Jue RA, Woodbury NW, Doolittle RF (1980) Sequence homologies amongE. coli ribosomal proteins: evidence for evolutionarily related groupings and internal duplications. J Mol Evol 15:129–148

    Article  PubMed  Google Scholar 

  • Kubota Y, Takahashi S, Nishikawa K, Ooi T (1981) Homology in protein expressed by correlation coefficients. J Theor Biol 91:347–361

    Article  PubMed  Google Scholar 

  • Kubota Y, Nishikawa K, Takahashi S, Ooi T (1982) Correspondence of homologies in amino acid sequence and tertiary structure of protein molecules. Biochim Biophys Acta 701: 242–252

    PubMed  Google Scholar 

  • Lin A, Wittmann-Liebold B, McNally J, Wool IG (1982) The primary structure of the acidic phosphoprotein P2 from rat liver 60S ribosomal subunits. J Biol Chem 257:9189–9197

    PubMed  Google Scholar 

  • Lin A, McNally J, Wool IG (1983) The primary structure of rat liver ribosomal protein L37. Homology with yeast and bacterial ribosomal proteins. J Biol Chem 258:10664–10671

    PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York

    Google Scholar 

  • Simpson GG (1964) Organisms and molecules in evolution. Science 146:1535–1538

    PubMed  Google Scholar 

  • Terhorst C, Möller W, Laursen R, Wittmann-Liebold B (1973) The primary structure of an acidic protein from 50-S ribosomes ofEscherichia coli which is involved in GTP hydrolysis dependent on elongation factors G and T. Eur J Biochem 34: 138–152

    Article  PubMed  Google Scholar 

  • Visentin LP, Yaguchi M, Matheson AT (1979) Structural homologies in alanine-rich acidic ribosomal proteins from procaryotes and eucaryotes. Can J Biochem 57:719–726

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otaka, E., Ooi, T., Kumazaki, T. et al. Examination of protein sequence homologies: I. ElevenEscherichia coli L7/L12-type ribosomal “A” protein sequences from eubacteria and chloroplast. J Mol Evol 21, 339–345 (1985). https://doi.org/10.1007/BF02115652

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02115652

Key words

Navigation