Skip to main content
Log in

How do alterations in plant mitochondrial genomes disrupt pollen development?

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cytoplasmic male sterility arises when mitochondrial activities are disrupted that are essential for pollen development. Rearrangements in the mitochondrial genome that create novel open reading frames are strongly correlated with CMS phenotypes in a number of systems. The morphological aberrations which indicate CMS-associated degeneration are frequently restricted to the male sporogenous tissue and a limited number of vegetative tissues. In several cases, this tissue specificity may result from interactions between the mitochondrial genome and nuclear genes that regulate mitochondrial gene expression. A molecular mechanism by which CMS might be caused has not been conclusively demonstrated for any system. Several hypotheses for general mechanisms by which mitochondrial dysfunction might disrupt pollen development are discussed, based on similarities between the novel CMS-associated genes from a number of systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad, A., Mehrtens, B., and MacKenzie, S. (1995).The Plant Cell,7, 271–285.

    Article  PubMed  Google Scholar 

  • Albertini, L., Souvre, A., and Audran, J. C. (1987).Rev. Cytol. Biol. veg. Bot. 10, 211–242.

    Google Scholar 

  • Bino, R. J. (1985a).Theor. Appl. Genet. 69, 423–428.

    Article  Google Scholar 

  • Bino, R. J. (1985b).Protoplasma 127, 230–240.

    Article  Google Scholar 

  • Bino, R. J., Suurs, L. C. J. M., de Hoop, S. J., van der Neut, A., van Went, J. L., and van Marrewijk, G. A. M. (1986).Euphytica 35, 905–918.

    Article  Google Scholar 

  • Boeshore, M. L., Hanson, M. R., and Izhar, S. (1985).Plant Mol. Biol. 4, 125–132.

    Google Scholar 

  • Carpenter, J. L., Ploense, S. E., Snustad, D. P., and Silflow, C. D. (1992).Plant Cell 4, 557–571.

    Article  PubMed  Google Scholar 

  • Chaudhury, A. M., Farrell, L. B., Chapple, R., Bloemer, K. C., Craig, S., and Dennis, E. S. (1994). InGenetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants (Williams, E. G., Clarke, A. E., and Knox, R. B., eds.), Kluwer Academic Publishers, Dordrecht, pp. 289–308.

    Google Scholar 

  • Chen, R., Aguirre, P. J., and Smith, A. G. (1994).J. Plant Physiol. 143, 651–658.

    Google Scholar 

  • Clark, E. M., Izhar, S., and Hanson, M. R. (1985).Mol. Gen. Genet. 199, 440–445.

    Article  Google Scholar 

  • Conley, C. A., and Hanson, M. R. (1994).Plant Cell 6, 85–91.

    Article  PubMed  Google Scholar 

  • Conley, C. A., Nivison, H. T., Wilson, R. K., and Hanson, M. R. (1991).J. Cell Biol. 115, 300 A.

    Google Scholar 

  • Conley, C. A., Parthasarathy, M. V., and Hanson, M. R. (1994).Am. J. Bot. 81, 630–640.

    Google Scholar 

  • Conley, C. A., and Hanson, M R. (1995). “Cryostat tissue printing: an improved method for histochemical and immunocytochemical localization in soft tissue,” submitted.

  • Connett, M. B., and Hanson, M. R. (1990).Plant Physiol. 93, 1634–1640.

    Google Scholar 

  • De Paepe, R., Forchioni, A., Chetrit, P., and Vedel, F. (1993).Proc. Natl. Acad. Sci. 90, 5934–5938.

    PubMed  Google Scholar 

  • Dennis, D. T. (1987).The Biochemistry of Energy Utilization in Plants, Chapman and Hall, New York.

    Google Scholar 

  • Dewey, R. E., Levings, C. S., and Timothy, D. H. (1986).Cell 44, 439–449.

    Article  PubMed  Google Scholar 

  • Diolez, P., Kesseler, A., Haraux, F., Valerio, M., Brinkmann, K., and Brand, M. D. (1993).Biochem. Soc. Trans. 21, 769–773.

    PubMed  Google Scholar 

  • Douce, R., and Neuberger, M. (1989).Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 371–414.

    Article  Google Scholar 

  • Edwardson, J. R., and Warmke, H. E. (1967).J Hered. 58, 195–196.

    Google Scholar 

  • Esau, K. (1977).The Anatomy of Seed Plants, 2nd ed., Wiley, New York.

    Google Scholar 

  • Flavell, R. (1974).Plant Sci. Lett. 3, 259–263.

    Article  Google Scholar 

  • Hanson, M. R. (1991).Annu. Rev. Genet. 25, 461–486.

    Article  PubMed  Google Scholar 

  • Hanson, M. R., and Conde, M. F. (1985).Inter. Rev. Cytol. 94, 213–267.

    Google Scholar 

  • Hanson, M. R., Young, E. G., and Rothenberg, M. (1988).Philos. Trans. R. Soc. London 319, 199–208.

    Google Scholar 

  • Hanson, M. R., Nivison, H. T., and Conley, C. A. (1995). InMolecular Biology of the Mitochondria (Levings, C. S., III, and Vasil, I. K., eds.), Kluwer Academic, Dordrecht, in press.

    Google Scholar 

  • Hatefi, Y. (1985).Annu. Rev. Biochem. 54, 1015–1069.

    Article  PubMed  Google Scholar 

  • He, S., Lyznik, A., and MacKenzie, S. (1995).Genetics,139, 955–962.

    PubMed  Google Scholar 

  • Houlne, G., and Boutry, M. (1994).Plant J. 5, 311–317.

    Article  PubMed  Google Scholar 

  • Huang, J., Struck, F., Matzinger, D. F., and Levings, C. S. (1994).Plant Cell 6, 439–448.

    Article  PubMed  Google Scholar 

  • Izhar, S., and Frankel, R. (1971a).Acta Bot. Neerlandica 3, 14–22.

    Google Scholar 

  • Izhar, S., and Frankel, R. (1971b).Theor. Appl. Genet. 41, 104–108.

    Article  Google Scholar 

  • Izhar, S., and Frankel, R. (1976).J. Hered. 67, 43–46.

    Google Scholar 

  • Izhar, S., Schlichter, M., and Schwartzberg, D. (1983).Mol. Gen. Genet. 190, 1087–1096.

    Article  Google Scholar 

  • Johns, C., Lu, M., Lyznik, A., and MacKenzie, S. (1992).Plant Cell 4, 435–449.

    Article  PubMed  Google Scholar 

  • Kadowaki, K. I., Suzuki, T., and Kazama, S. (1990).Mol. Gen. Genet. 224, 10–16.

    Article  PubMed  Google Scholar 

  • Kaul, M. L. H. (1988).Male Sterility in Higher Plants, Springer-Verlag, Berlin.

    Google Scholar 

  • Kennell, J. C., Wise, R. P., and Pring, D. R. (1987).Mol. Gen. Genet. 210, 399–406.

    Article  Google Scholar 

  • Koehler, R. H., Horn, R., Loessel, A., and Zetsche, K. (1991).Mol. Gen. Genet. 227, 369–376.

    Article  PubMed  Google Scholar 

  • Kofer, W., Glimelius, K., and Bonnet, H. T. (1991).Plant Cell 3, 759–769.

    Article  PubMed  Google Scholar 

  • Koltunow, A. M., Truettner, J., Cox, K. H., Wallroth, M., and Goldberg, J. B. (1990).Plant Cell,2, 1201–1224.

    Article  PubMed  Google Scholar 

  • Krishasamy, S., and Makaroff, C. A. (1992).Curr. Genet. 24, 156–163.

    Article  Google Scholar 

  • Krishnasamy, S., and Makaroff, C. A. (1994).Plant Mol. Biol. 26, 935–946.

    Article  PubMed  Google Scholar 

  • Laser, K. D., and Lersten, N. R. (1972).Bot. Rev. 38, 425–454.

    Google Scholar 

  • Lee, S.-J. L., and Warmke, H. E. (1979).Am. J. Bot. 66, 141–148.

    Google Scholar 

  • Levings, C. S. (1988).Philos. Trans. R. Soc. London B 319, 177–186.

    Google Scholar 

  • Levings, C. S. (1993).Plant Cell 5, 1285–1290.

    Article  PubMed  Google Scholar 

  • L'Homme, Y., and Brown, G. G. (1993).Nucleic Acids Res. 21, 1903–1909.

    PubMed  Google Scholar 

  • Liu, X. C., Jones, K., and Dickinson, H. G. (1987).Theor. Appl. Genet. 74, 846–851.

    Article  Google Scholar 

  • Makaroff, C. A., and Palmer, J. D. (1991).Mol. Cell Biol. 8, 1474–1480.

    Google Scholar 

  • Moneger, F., Smart, C. J., and Leaver, C. J. (1994).EMBO J. 13, 8–17.

    PubMed  Google Scholar 

  • Moore, A. L., and Siedow, J. N. (1991).Biochim. Biophys. Acta 1059, 121–140.

    PubMed  Google Scholar 

  • Moore, A. L., Ruth, D. C., and Hanson, M. R. (1992). Abstracts of the Joint Workshops on RNA Editing in Plant Mitochondria and Interactions of Three Genomes, International Human Frontier Science Program Organization, Berlin.

    Google Scholar 

  • Moore, A. L., Leach, G., and Whitehouse, D. G. (1993).Biochem. Soc. Trans. 21, 765–769.

    PubMed  Google Scholar 

  • Newton, K. J., and Walbot, V. (1985).Proc. Natl. Acad. Sci. USA 82, 6879–6883.

    PubMed  Google Scholar 

  • Nivison, H. T., and Hanson, M. R. (1989).Plant Cell 1, 1121–1130.

    Article  PubMed  Google Scholar 

  • Nivison, H. T., and Hanson, M. R. (1987).Plant Mol. Biol. Rep. 5, 295–309.

    Google Scholar 

  • Nivison, H. T., Sutton, C. A., Wilson, R. K., and Hanson, M. R. (1994).Plant J. 5, 613–623.

    Article  PubMed  Google Scholar 

  • Pacini, E. (1994). InGenetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants (Williams, E. G., Clarke, A. E., and Knox, R. B., eds.), Kluwer Academic Publishers, Dordrecht, pp. 289–308.

    Google Scholar 

  • Pfeil, U., van der Kuip, H., and Hesemann, C. U. (1994).Theor. Appl. Genet. 88, 231–235.

    Article  Google Scholar 

  • Pruitt, K. D., and Hanson, M. R. (1991).Mol. Gen. Genet. 227, 348–355.

    Article  PubMed  Google Scholar 

  • Raghavendra, A. S., Padmasree, K., and Saradadevi, K. (1994).Plant Sci. 97, 1–14.

    Article  Google Scholar 

  • Rasmussen, J., and Hanson, M. R. (1989).Mol. Gen. Genet. 215, 332–336.

    Article  PubMed  Google Scholar 

  • Siedow, J. N. (1990). InPerspectives in Biochemical and Genetic Regulation of Photosynthesis (Zelitch, I., ed.), Wiley-Liss, New York, pp. 355–366.

    Google Scholar 

  • Singh, M., and Brown, G. G. (1991).Plant Cell 3, 1349–1362.

    Article  PubMed  Google Scholar 

  • Smart, C. J., Moneger, F., and Leaver, C. J. (1994).Plant Cell 6, 811–825.

    Article  PubMed  Google Scholar 

  • Spangenberg, G., Pérez-Vicente, R., Oliveira, M. M., Osusky, M., Nagel, J., Pais, M. S., and Potrykus, I. (1992).Sexual Plant Reprod. 5, 13–26.

    Article  Google Scholar 

  • Trull, M. C., and Malmberg, R. L. (1994). InGenetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants (Williams, E. G., Clarke, A. E., and Knox, R. B., eds.), Kluwer Academic Publishers, Dordrecht, pp. 266–284

    Google Scholar 

  • Umbach, A. L., and Siedow, J. N. (1993).Plant Physiol. 103, 845–854.

    PubMed  Google Scholar 

  • van Marrewijk, G. A. M. (1969).Euphytica 18, 1–20.

    Google Scholar 

  • van Marrewijk, G. A. M., Bino, R. J., and Suurs, L. C. J. M. (1986).Euphytica 35, 77–88.

    Article  Google Scholar 

  • Vedel, F., Pla, M., Vitart, V., Gutierres, S., Chetrit, P., and De Paepe, R. (1994).Plant Physiol. Biochem. 32, 601–618.

    Google Scholar 

  • Wintz, H., Chen, H.-C, Sutton, C. A., Conley, C. A., Cobb, A., Ruth, D., and Hanson, M. R. (1995).Plant Mol. Biol., in press.

  • Xue, Y., Collin, S., Davies, D. R., and Thomas, C. M. (1994).Plant Mol. Biol. 25, 91–103.

    Article  PubMed  Google Scholar 

  • Ye, Z.-H., and Varner, J. E. (1991).Plant Cell 3, 23–37.

    Article  PubMed  Google Scholar 

  • Young, E. G., and Hanson, M. R. (1987).Cell 50, 41–49.

    Article  PubMed  Google Scholar 

  • Young, E. G., Hanson, M. R., and Dierks, P. M. (1986).Nucleic Acids Res. 14, 7995–8006.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conley, C.A., Hanson, M.R. How do alterations in plant mitochondrial genomes disrupt pollen development?. J Bioenerg Biomembr 27, 447–457 (1995). https://doi.org/10.1007/BF02110007

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110007

Key words

Navigation