Skip to main content
Log in

The effects of slippage and diffraction in long wavelength operation of a free electron laser

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The Free-Electron Laser user facility FELIX produces picosecond optical pulses in the wavelength range of 5–110μm. The proposed installation of a new undulator with a larger magnetic period would allow extension towards considerably longer wavelengths. This would result in the production of extremely short, far-infrared pulses, with a duration of a single optical period or even less. In order to investigate the pulse propagation for free-electron lasers operating in the long wavelength limit, a three-dimensional simulation code was developed. Using the FELIX parameters, with the addition of a long-period undulator, the effects of slippage, diffraction losses, changes in the filling factor, as well as the effects of the optical cavity geometry were studied for wavelengths up to 300μm, with electron pulses in the ps regime. It is shown that slippage effects are less restrictive for long wavelength operation than the increasing losses due to optical beam diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. B. Colson, “Classical Free Electron Laser Theory”, Chapter 3 in ”Free Electron Laser Handbook VI”, Eds. W. B. Colson, C. Pellegrini and A. Renieri, North Holland, Amsterdam (1986).

    Google Scholar 

  2. R. J. Bakker, C. A. J. van der Geer, D. A. Jaroszynski, A. F. G. van der Meer, D. Oepts, and P.W. van Amersfoort,J. Appl. Phys. 74 (1993) 1501.

    Google Scholar 

  3. G. Ramian,Nucl. Instrum. Methods Phys. Res. A318 (1992) 225.

    Google Scholar 

  4. J. Burghoorn, J. P. Kaminski, R. C. Strijbos, T. O. Klaassen and W. Th. Wenkebach,Nucl. Instrum. Methods Phys. Res. A318 (1992) 85.

    Google Scholar 

  5. D. A. Jaroszynski, D. Oepts, A. F. G. van der Meer, P. W. van Amersfoort and W. B. Colson,Nucl. Instrum. Methods Phys. Res. A296 (1990) 480.

    Google Scholar 

  6. R. J. Bakker, D. A. Jaroszynski, A. F. G. van der Meer, D. Oepts, P. W. van Amersfoort,IEEE J. Quantum Electron. 30 (1994) 1635.

    Google Scholar 

  7. A. A. Andreev, V. I. Zhulin, A. P. Mikhailovski, K. Yu Platonov,Quant. Electronics (USSR)18 (1991) 795.

    Google Scholar 

  8. V. I. Zhulin,SPIE 1840 (1991) 244.

    Google Scholar 

  9. C. W. Roberson and P. Sprangle,Phys. Fluids B1(1) (1989) 3.

    Google Scholar 

  10. B. Faatz, R. W. B. Best, D. Oepts and P. W. van Amersfoort,IEEE J. Quantum Electron. 29 (1993) 2229.

    Google Scholar 

  11. G. Dattoli, A. Renieri, A. Torre, Chapter 10 in “Lectures on the Free Electron Laser Theory and Related Topics”, World Scientific, Singapore (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhulin, V.I., Haselhoff, E.H. & van Amersfoort, P.W. The effects of slippage and diffraction in long wavelength operation of a free electron laser. Int J Infrared Milli Waves 16, 327–337 (1995). https://doi.org/10.1007/BF02085867

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02085867

Keywords

Navigation