Skip to main content
Log in

Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Calcium and other alkaline earth cations change the electrostatic potential adjacent to negatively charged bilayer membranes both by accumulating in the aqueous diffuse double layer adjacent to the membrane and by adsorbing to the phospholipids. The effects of these cations on the electrostatic potential are described adequately by the Gouy-Chapman-Stern theory. We report the results of experiments with ethane-bis-trimethylammonium, a cation that has been termed “dimethonium” or “ethamethonium” in analogy with hexamethonium (hexane-1,6-bis-trimethylammonium) and decamethonium (decane-1,10-bis-trimethylammonium). We examined the effect of dimethonium on the zeta potential of multilamellar vesicles formed from the negative lipid phosphatidylserine (PS) and from 5 ∶ 1 phosphatidylcholine/phosphatidylserine mixtures in solutions containing 0.1, 0.01 and 0.001m sodium, cesium, or tetramethylammonium chloride. We also examined the effect of dimethonium on the conductance of planar PS bilayer membranes and the31P NMR signal from sonicated PS vesicles formed in 0.1m NaCl. We found no evidence that dimethonium adsorbs specifically to bilayer membranes. All the results, except for those obtained with vesicles of low charge density formed in a solution with a high salt concentration, are consistent with the predictions of the Gouy-Chapman theory. We conclude that dimethonium, which does not have the pharmacological effects of hexamethonium and decamethonium, is a useful divalent cation for physiologists interested in investigating electrostatic potentials adjacent to biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akutsu, H., Seelig, J. 1981. Interaction of metal ions with phosphatidylcholine bilayer membranes.Biochemistry 20:7366–7373

    PubMed  Google Scholar 

  2. Alvarez, O., Brodwick, M., Latorre, R., McLaughlin, A., McLaughlin, S., Szabo, G. 1983. Large divalent cations and electrostatic potentials adjacent to membranes: Experimental results with hexamethonium.Biophys. J. (in press)

  3. Bangham, A.D., Hill, M.W., Miller, N.G.A. 1974. Preparation and use of liposomes as models of biological membranes.Methods Membr. Biol. 1:1–68

    Google Scholar 

  4. Begenisich, T. 1975. Magnitude and location of surface charges onMyxicola giant axons.J. Gen. Physiol. 66:47–65

    PubMed  Google Scholar 

  5. Benz, R., McLaughlin, S. 1983. The molecular mechanism of action of the proton ionophore FCCP.Biophys. J. 43:381–398

    Google Scholar 

  6. Bhuiyan, L.B., Outhwaite, C.W., Levine, S. 1981. Numerical solution of a modified Poisson-Boltzmann equation for 1∶2 and 2∶1 electrolytes in the diffuse layer.Mol. Phys. 42:1271–1290

    Google Scholar 

  7. Carnie, S., McLaughlin, S. 1983. Large divalent cations and electrostatic potentials adjacent to membranes: A theoretical calculation.Biophys. J. (in press)

  8. Dani, J., Sanchez, J.A., Hille, B. 1983. Lyotropic anions: Na channel gating and Ca electrode response.J. Gen. Physiol. 81:255–281

    PubMed  Google Scholar 

  9. Eisenberg, M., Gresalfi, T., Riccio, T., McLaughlin, S. 1979. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids.Biochemistry 18:5213–5223

    PubMed  Google Scholar 

  10. Fohlmeister, J.F., Adelman, W.J., Jr. 1982. Periaxonal surface calcium binding and distribution of charge on the faces of squid axon potassium channel molecules.J. Membrane Biol. 70:115–123

    Google Scholar 

  11. Frankenhaeuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:218–244

    Google Scholar 

  12. Gilbert, D., Ehrenstein, G. 1969. Effect of divalent cations on potassium conductance of squid axons: Determination of surface charge.Biophys. J. 9:447–463

    PubMed  Google Scholar 

  13. Grasdalen, H., Eriksson, L.E.G., Westman, J., Ehrenberg, A. Surface potential effects on metal ion binding to phosphatidylcholine membranes.Biochim. Biophys. Acta 469:151–162

  14. Henry, D.C. 1938. A source of error in micro-cataphoretic measurements with a cylindrical-bore cell.J. Chem. Soc. (London) 997–999

  15. Hille, B., Woodhull, A.M., Shapiro, B.I. 1975. Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions, and pH.Phil. Trans. R. Soc. London B. 270:301–318

    Google Scholar 

  16. Kostyuk, P.G., Mironov, S.L., Doroshenko, P.A., Ponomarev, V.N. 1982. Surface charges on the outer side of mollusc neuron membrane.J. Membrane Biol. 70:171–179

    Google Scholar 

  17. Kurland, R., Newton, C., Nir, S., Papahadjopoulos, D. 1979. Specificity of Na+ binding to phosphatidylserine vesicles from a23Na NMR relaxation study.Biochim. Biophys. Acta 551:137–147

    PubMed  Google Scholar 

  18. Lau, A., McLaughlin, A., McLaughlin, S. 1981. The adsorption of divalent cations to phosphatidylglycerol bilayer membranes.Biochim. Biophys. Acta 645:279–292

    PubMed  Google Scholar 

  19. MacDonald, R.C., Bangham, A.D. 1972. Comparison of double layer potentials in lipid monolayers and lipid bilayer membranes.J. Membrane Biol. 7:29–53

    Google Scholar 

  20. McLaughlin, A. 1982. Phosphorous-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphotidylserine membranes: Use of cobalt as a paramagnetic probe.Biochemistry 21:4879–4885

    PubMed  Google Scholar 

  21. McLaughlin, S. 1977. Electrostatic potentials at membranesolution interfaces.Curr. Top. Membr. Transp. 9:71–144

    Google Scholar 

  22. McLaughlin, S. 1982. Divalent cations, electrostatic potentials, bilayer membranes.In: Membranes and Transport. A. Martonosi, editor. Vol. 1, pp. 51–55. Plenum Press, New York

    Google Scholar 

  23. McLaughlin, S. 1983. Experimental tests of the assumptions inherent in the Gouy-Chapman-Stern theory of the aqueous diffuse double layer.In: Physical Chemistry of Transmembrane Ion Movements. G. Spach, editor. Elsevier, Amsterdam

    Google Scholar 

  24. McLaughlin, S., Mulrine, N., Gresalfi, T., Vaio, G., McLaughlin, A. 1981. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine.J. Gen. Physiol. 77:445–473

    PubMed  Google Scholar 

  25. McLaughlin, S.G.A., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667–687

    PubMed  Google Scholar 

  26. McLaughlin, S.G.A., Szabo, G., Eisenman, G., Ciani, S. 1970. Surface charge and the conductance of phospholipid membranes.Proc. Natl. Acad. Sci. USA 67:1268–1275

    PubMed  Google Scholar 

  27. Mozhayeva, G.N., Naumov, A.P. 1970. Effect of surface charge on the steady-state potassium conductance of nodal membrane.Nature (London) 228:164–165

    Google Scholar 

  28. Nir, S., Newton, C., Papahadjopoulos, D. 1978. Binding of cations to phosphatidylserine vesicles.Bioelectrochem. Bioenerg. 5:116–133

    Google Scholar 

  29. Ohki, S. 1981. Membrane potentials, surface potential, and ionic permeabilities.Physiol. Chem. Phys. 13:195–210

    PubMed  Google Scholar 

  30. Ohki, S., Kurland, R. 1981. Surface potential of phosphatidylserine monolayers: II. Divalent and monovalent binding.Biochim. Biophys. Acta 645:170–176

    PubMed  Google Scholar 

  31. Schauf, C.L. 1975. The interactions of calcium withMyxicola giant axons and a description in terms of a simple surface charge model.J. Physiol. (London) 248:613–624

    Google Scholar 

  32. Shindo, H., Takahashi, I., Nakajima, E. 1971. Autoradiographic studies on the distribution of quaternary ammonium compounds. II. Distribution of14C-labeled decamethonium, hexamethonium and dimethonium in mice.Chem. Pharm. Bull. 19:1876–1885

    PubMed  Google Scholar 

  33. Szabo, G., Eisenman, G., McLaughlin, S.G.A., Krasne, S. 1972. Ionic probes of membrane structure.Ann. N.Y. Acad. Sci. 195:273–290

    PubMed  Google Scholar 

  34. Tocanne, J.F., Tichadou, J.L., Lakhadar-Ghazal, F. 1983. Influence du pH et de la force ionique sur le degre d'ionisation de phospholipides acides dans des systemes modeles de membranes.In: Physical Chemistry of Transmembrane Ion Movements. G. Spach, editor. Elsevier, Amsterdam

    Google Scholar 

  35. Torrie, G.M., Valleau, J.P. 1982. Electrical double layers: 4. Limitations of the Gouy-Chapman theory.J. Phys. Chem. 86:3251–3257

    Google Scholar 

  36. Wiersema, P.H., Loeb, A.L., Overbeek, J.T.G. 1966. Calculation of the electrophoretic mobility of a spherical colloid particle.J. Colloid Interface Sci. 22:78–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLaughlin, A., Eng, WK., Vaio, G. et al. Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes. J. Membrain Biol. 76, 183–193 (1983). https://doi.org/10.1007/BF02000618

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02000618

Key Words

Navigation