Skip to main content
Log in

Sodium and potassium channels in myelinated nerve fibers

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Almers, W., Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmac.82 (1978) 96–190.

    Article  CAS  Google Scholar 

  2. Armstrong, C.M., Sodium channels and gating currents. Physiol. Rev.61 (1981) 644–683.

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong, C.M., and Bezanilla, F., Currents related to movement of gating particles of the sodium channels. Nature242 (1973) 459–461.

    Article  CAS  PubMed  Google Scholar 

  4. Barrett, J.N., Magleby, K.L., and Pallotta, B.S., Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol., Lond.331 (1982) 211–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bendat, J.S., and Piersol, A.G., Random data: Analysis and measurement procedures. Wiley Interscience, New York 1971.

    Google Scholar 

  6. Bezanilla, F., White, M.M., and Taylor, R.E., Gating currents associated with potassium channel activation. Nature296 (1982) 657–659.

    Article  CAS  PubMed  Google Scholar 

  7. Brismar, T., Potential clamp analysis of membrane currents in rat myelinated nerve fibers. J. Physiol., Lond.298 (1980) 171–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiu, S.Y., Inactivation of sodium channels: Second order kinetics in myelinated nerve. J. Physiol., Lond.273 (1977) 573–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chiu, S.Y., Asymmetry currents in the mammalian myelinated nerve. J. Physiol., Lond.309 (1980) 499–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chiu, S.Y., and Ritchie, J.M., Evidence for the presence of potassium channels in the paranodal region of acutely demyelinated mammalian single nerve fibers. J. Physiol., Lond.313 (1981) 415–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiu, S.Y., and Ritchie, J.M., Evidence for the presence of potassium channels in the internode of frog myelinated nerve fibers. J. Physiol., Lond.322 (1982) 485–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiu, S.Y., Ritchie, J.M., Rogart, R.B., and Stagg, D., A quantitative description of membrane currents in rabbit myelinated nerve. J. Physiol., Lond.292 (1979) 149–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conti, F., Neumcke, B., Nonner, W., and Stämpfli, R., Conductance fluctuations from the inactivation process of sodium channels in myelinated nerve fibers. J. Physiol., Lond.308 (1980) 217–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dubois, J.M., Evidence for the existence of 3 types of potassium channels in the frog Ranvier node membrane. J. Physiol., Lond.318 (1981) 297–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. French, R.J., Worley, J.F., and Krueger, B.K., Unitary current fluctuations due to saxitoxin block of sodium channels in planar bilayers. Biophys. J.41 (1983) 142a.

    Google Scholar 

  16. Hille, B., Ionic selectivity of Na and K channels of nerve; in: Membranes, a series of advances, vol. 3, pp. 255–323. Ed. G. Eisenman. Marcel Dekker Inc., New York/Basel 1975.

    Google Scholar 

  17. Hodgkin, A.L., and Huxley, A.F., A quantitative description of membrane currents and its application to conductance and excitation in nerve. J. Physiol., Lond.117 (1952) 500–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagy, K., and Kisch, T., Properties of single channells in mouse neuroblastoma cells (NIE 115). Naunyn-Schmiedebergs Arch. Pharmac.332 (1983) R61.

    Google Scholar 

  19. Neumcke, B., Fluctuation of Na current and K current in excitable membranes. Int. Rev. Neurobiol.23 (1982) 35–67.

    Article  CAS  PubMed  Google Scholar 

  20. Neumcke, B., Nonner, W., and Stämpfli, R., Gating currents in excitable membranes. Int. Rev. Biochem.19 (1978) 129–155.

    CAS  Google Scholar 

  21. Neumcke, B., Schwarz, W., and Stämpfli, R., Slow actions of hyperpolarizations on sodium channels in the membrane of myelinated nerve. Biochim. biophys. Acta558 (1979) 113–118.

    Article  CAS  PubMed  Google Scholar 

  22. Neumcke, B., Schwarz, W., and Stämpfli, R., Differences between K channels in motor and sensory nerve fibers of the frog as revealed by fluctuation analysis. Pflügers Arch.387 (1980) 9–16.

    Article  CAS  PubMed  Google Scholar 

  23. Neumcke, B., Schwarz, W., and Stämpfli, R., Modification of sodium inactivation in myelinated nerve by anemonia toxin II and iodate: Analysis of current fluctuations and current relaxations. Biochim. biophys. Acta600 (1980) 456–466.

    Article  CAS  PubMed  Google Scholar 

  24. Neumcke, B., Schwarz, W., and Stämpfli, R., Block of sodium channels in the membrane of myelinated nerve by benzocaine. Pflügers Arch.390 (1981) 230–236.

    Article  CAS  PubMed  Google Scholar 

  25. Neumcke, B., and Stämpfli, R., Sodium current and sodium current fluctuations in rat myelinated nerve fibers. J. Physiol., Lond.329 (1982) 163–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Neumcke, B., and Stämpfli, R., Alteration of the conductance of Na+ channels in the nodal membrane of frog nerve by holding potential and tetrodotoxin. Biochim. biophys. Acta727 (1983) 177–184.

    Article  CAS  PubMed  Google Scholar 

  27. Nonner, W., Relaxation between the inactivation of sodium channels and the immobilization of gating charge in frog myelinated nerve. J. Physiol., Lond.299 (1980) 573–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nonner, W., Rojas, E., and Stämpfli, R., Displacement currents in the node of Ranvier: Voltage and time dependence. Pflügers Arch.354 (1975) 1–18.

    Article  CAS  PubMed  Google Scholar 

  29. Schwarz, J.R., and Vogel, W., Potassium inactivation in single myelinated nerve fibers ofXenopus laevis. Pflügers Arch.330 (1971) 61–73.

    Article  CAS  PubMed  Google Scholar 

  30. Schwarz, W., Neumcke, B., and Palade, P.T., K-current fluctuations in inward-rectifying channels of frog skeletal muscle. J. Membrane Biol.63 (1981) 85–92.

    Article  CAS  Google Scholar 

  31. Sigworth, F.J., The variance of sodium current fluctuations at the node of Ranvier. J. Physiol., Lond.307 (1980) 97–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sigworth, F.J., and Neher, E., Single Na+ channel currents observed in cultured rat muscle cells. Nature287 (1980) 447–449.

    Article  CAS  PubMed  Google Scholar 

  33. Stämpfli, R., and Hille, B., Electrophysiology of the peripheral myelinated nerve; in: Frog neurobiology, pp. 1–32. Eds R. Llinas and W. Precht. Springer Berlin/Heidelberg 1976.

    Google Scholar 

  34. Swenson, R.P., A slow component of gating current in crayfish giant axons resembles inactivation charge movement. Biophys. J.41 (1983) 245–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Swenson, R.P., and Armstrong, C.M., K+ channels close more slowly in the presence of external K+ and Rb+. Nature291 (1981) 427–429.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgment. I thank Drs B. Neumcke, H. Passow and R. Stämpfli for their comments on the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, W. Sodium and potassium channels in myelinated nerve fibers. Experientia 39, 935–941 (1983). https://doi.org/10.1007/BF01989757

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01989757

Keywords

Navigation