Skip to main content
Log in

Microcalorimetric studies of the structure of supported bimetallic catalyst particles

A review

  • Adsorption, Catalysis
  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Microcalorimetric studies of oxygen and hydrogen chemisorption during the last decade improved the understanding of the structure and structural dynamics of supported bimetallic catalyst particles. For example, it was found that on graphitic supports two different reduced surface compositions/structures can be created for base metal/noble metal particles. Appropriate treatments “switch” the surface from almost pure reduced base metal to true alloy. Calorimetric studies also indicate support interactions play a major role in controlling bimetallic particle surface structure. In contrast to behaviour found on graphitic supports, iron/noble metal particles supported on refractory oxides apparently do not form alloy surfaces. The reduced surface is dominated by the noble metal. Several studies indicate the value of the models of surface composition/structure developed using microcalorimetry for predicting the activity/selectivity of bimetallic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Dumesic and N. Cardona-Martinez, Adv. in Catalysis, 38 (1992) 149.

    Article  Google Scholar 

  2. W. E. Farneth and R. J. Gorte, Chem. Rev., 95 (1995) 615.

    Article  CAS  Google Scholar 

  3. M. K. O'Neil and J. Phillips, J. Phys. Chem., 91 (1987) 2867.

    Article  Google Scholar 

  4. F. G. Keyes and M. J. Marshall, J. Am. Chem. Soc., 49 (1927) 156.

    Article  CAS  Google Scholar 

  5. A. S. Gow and J. Phillips, Energy and Fuels, 6 (1992) 184.

    Article  CAS  Google Scholar 

  6. L. Radovic, J. A. Menendez-Diaz, B. Xia and J. Phillips, Langmuir, 12 (1996) 4404.

    Article  Google Scholar 

  7. T. Paryjczak and P. A. Zielinski, Polish J. of Chem., 57 (1983) 1303.

    CAS  Google Scholar 

  8. H. Minai, T. Suzuki, K. Ushikabo, T. Sugiyama, T. Matsuda and R. D. Gonzalez, J. Catal., 85 (1984) 331.

    Article  Google Scholar 

  9. S. Alerasool, D. Boecker, B. Rejai, R. D. Gonzalez, G. del Angel, A. Azomasa and R. Gomez, Langmuir, 4 (1988) 1083.

    Article  CAS  Google Scholar 

  10. R. R. Gatte and J. Phillips, J. Catal., 116 (1989) 49.

    Article  CAS  Google Scholar 

  11. T. Mizushima, K. Tohji, Y. Udagawa, M. Havada, M. Ishikawa and A. Ueno, J. Catal., 112 (1988) 282.

    Article  CAS  Google Scholar 

  12. Y. Minai, T. Tominaga, T. Fukushima and M. Ishikawa in “Industrial Applications of the Mössbauer Effect” (Ed. G. J. Long and J. G. Sterens) Plenum Press, NY 1986, p. 635.

    Google Scholar 

  13. J. W. Niemantsverdriet, A. M. Van der Kraan and W. N. Delgass, J. Catal., 89 (1984) 138.

    Article  CAS  Google Scholar 

  14. H. Durr and J. Phillips, J. Catal., 126 (1990) 619.

    Article  CAS  Google Scholar 

  15. J. M. Thomas and W. J. Thomas, Introduction to the Principles of Heterogeneous Catalysis, Academic Press, London 1967, p. 102.

    Google Scholar 

  16. W. E. Garner and F. J. Veal, J. Chem. Soc., 1436 (1935).

  17. R. L. Gale, J. Harber and F. S. Stone, J. Catal., 1 (1962) 32.

    Article  CAS  Google Scholar 

  18. P. C. Gravelle, Adv. in Catalysis, 22 (1972) 191.

    Article  CAS  Google Scholar 

  19. P. J. Andersen and H. H. Kung, J. Phys. Chem., 96 (1992) 3114.

    Article  CAS  Google Scholar 

  20. D. J. Parrillo, C. Lee and R. J. Gorte, Appl. Catal. A, 110 (1994) 67.

    Article  CAS  Google Scholar 

  21. M. K. O'Neil, R. Lovrien and J. Phillips, Rev. Sci. Instr., 56 (1985) 2312.

    Article  Google Scholar 

  22. R. R. Gatte and J. Phillips, Langmuir, 5 (1989) 758.

    Article  CAS  Google Scholar 

  23. J. W. Niemantsverdriet, J. A. C. van Kaam, C. F. J. Flipse and M. A. Van der Kraan, J. Catal., 96 (1985) 58.

    Article  CAS  Google Scholar 

  24. R. L. Garten, J. Catal., 43 (1976) 18.

    Article  CAS  Google Scholar 

  25. M. V. Cagnoli, R. Magglovi, G. Schembari, S. Scire and S. Galgrano, J. Mol. Catal., 50 (1989) 67.

    Article  Google Scholar 

  26. H. Topsoe, J. A. Dumesic, and S. Morup in “Applications of Mössbauer Spectroscopy”, Vol. II (Ed. R. Cohen) Academic Press, NY 1980, p. 56.

    Google Scholar 

  27. S. M. da Silva and J. Phillips, J. Mol. Catal., 94 (1994) 97.

    Article  Google Scholar 

  28. A. Auroux, J. Phillips, G. Bergeret, J. Massadier and A. Renouprez, J. Phys. Chem., 97, (1993) 3565.

    Article  Google Scholar 

  29. R. R. Gatte and J. Phillips, J. Catal., 116 (1989) 49.

    Article  CAS  Google Scholar 

  30. O. Kubaschewski and B. E. Hopkins, “Oxidation of Metals and Alloys”, Butterworth, London 1967.

    Google Scholar 

  31. O. Kubaschewski, “Iron Binary Phase Diagrams”, Springer-Verlag, Berlin 1988.

    Google Scholar 

  32. J. Phillips, P. Gallezot and G. Bergeret, J. Mol. Catal., 78 (1993) 295.

    Article  CAS  Google Scholar 

  33. J. W. Cobes and J. Phillips, J. Phys. Chem., 95 (1991) 5545.

    Article  CAS  Google Scholar 

  34. R. W. Wunder and J. Phillips, J. Phys. Chem., 98 (1994) 12239.

    Article  Google Scholar 

  35. R. W. Wunder and J. Phillips, J. Phys. Chem., 100 (1996) 14430.

    Article  CAS  Google Scholar 

  36. R. W. Wunder, J. W. Cobes, J. Phillips, L. R. Radovic, A. J. Lopez-Peinado and F. Carrasco-Marin, Langmuir, 9 (1993) 984.

    Article  CAS  Google Scholar 

  37. J. F. Lynch and T. B. Flanagan, J. Chem. Soc. Faraday Trans. I, 20 (1974) 814.

    Google Scholar 

  38. S. V. Artamatov, G. D. Zakumbaeva and D. V. Soklo'skii, Dulk Acad. Nauk. SSSR, 224 (1979) 123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, J. Microcalorimetric studies of the structure of supported bimetallic catalyst particles. Journal of Thermal Analysis 49, 541–552 (1997). https://doi.org/10.1007/BF01987482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01987482

Keywords

Navigation