Skip to main content
Log in

High affinity insulin binding in the human placenta insulin receptor requires αβ heterodimeric subunit interactions

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Insulin binding to human placenta membranes treated at pH 7.6 or 8.5 in the presence or absence of 2.0mm DTT for 5 min, followed by the simultaneous removal of the DTT and pH adjustment to pH 7.6, displayed curvilinear (heterogeneous) insulin binding plots when analyzed by the method of Scatchard. However, Triton X-100 solubilization followed by Bio-Gel A-1.5m gel filtration chromatography of the placenta membranes previously treated with DTT at pH 8.5 generated a nearly straight line (homogeneous) Scatchard plot.125I-insulin affinity crosslinking studies coupled with Bio-Gel A-1.5m gel filtration chromatography demonstrated that the alkaline pH and DTT treatment of placenta membranes followed by detergent solubilization generated an αβ heterodimeric insulin receptor complex from the α2β2 heterotetrameric disulfide-linked state. The ability of alkaline pH and DTT to produce a functional αβ heterodimeric insulin receptor complex was found to be time dependent with maximal formation and preservation of tracer insulin binding occurring at 5 min. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of placenta membranes can result in the formation of a functional αβ heterodimeric insulin receptor complex. (ii) the αβ heterodimeric complex displays homogeneous insulin binding. (iii) the insulin receptor membrane environment maintains the α2β2 association state, which displays heterogeneous insulin binding, despite reduction of the critical domains that are responsible for the covalent interaction between the αβ heterodimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATP:

adenosine 5′-triphosphate

DTT:

dithiothreitol

SDS:

sodium dodecyl sulfate

DSS:

disuccinimidyl suberate

NEM:

N-ethylmaleimide

IGF-I:

insulin-like growth factor-I

EDTA:

ethylenediaminetetraacetic acid

HEPES:

4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid

References

  1. Avruch, J., Nemenoff, R.A., Blackshear, P.J., Pierce, M.W., Osathanondh, R. 1982. Insulin-stimulated tyrosine phosphorylation of the insulin receptor in detergent extracts of human placental membranes.J. Biol. Chem. 257:15162–15166

    PubMed  Google Scholar 

  2. Boni-Schnetzler, M., Rubin, J.B., Pilch, P.F. 1986. Structural requirements for the transmembrane activation of the insulin receptor kinase.J. Biol. Chem. 261:15281–15287

    PubMed  Google Scholar 

  3. Boni-Schnetzler, M., Scott, W., Waugh, S.M., Dibella, E., Pilch, P.F. 1987. The insulin receptor.J. Biol. Chem. 262:8395–8401

    PubMed  Google Scholar 

  4. Boyle, T.R., Campana, J., Sweet, L.J., Pessin, J.E. 1985. Subunit structure of the purified human placental insulin receptor.J. Biol. Chem. 260:8593–8600

    PubMed  Google Scholar 

  5. Czech, M.P. 1985. The nature and regulation of the insulin receptor: Structure and function.Annu. Rev. Physiol. 47: 357–381

    Google Scholar 

  6. Deger, A., Kramer, H., Rapp, R., Koch, R., Weber, U. 1986. The nonclassical insulin binding of insulin receptors from rat liver is due to the presence of two interacting α-subunits in the receptor complex.Biochem. Biophys. Res. Commun. 135:458–464

    PubMed  Google Scholar 

  7. Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J.-H., Masiarz, F., Kan, Y.W., Goldfine, I.D., Roth, R.A., Rutter, W.J. 1985. The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signaling.Cell 40:747–758

    PubMed  Google Scholar 

  8. Grunfeld, C., Shigenaga, J.K., Ramachandran, J. 1985. Urea treatment allows dithiothreitol to release the binding subunit of the insulin receptor from the cell membrane: Implications for the structural organization of the insulin receptor.Biochem. Biophys. Res. Commun. 133:389–396

    PubMed  Google Scholar 

  9. Harrison, L.C., Itin, A. 1980. Purification of the insulin receptor from human placenta by chromatography on immobilized wheat germ lectin and receptor antibody.J. Biol. Chem. 255:12066–12072

    PubMed  Google Scholar 

  10. Hedo, J.A., Collier, E., Watkinson, A. 1987. Myristyl and palmityl acylation of the insulin receptor.J. Biol. Chem. 262:954–957

    PubMed  Google Scholar 

  11. Jacobs, S., Cuatrecasas, P. 1980. Disulfide reduction converts the insulin receptor of human placenta to a low affinity form.J. Clin. Invest. 66:1424–1427

    PubMed  Google Scholar 

  12. Jacobs, S., Cuatrecasas, P. 1983. Insulin receptors.Annu. Rev. Pharmacol. Toxicol. 23:461–479

    PubMed  Google Scholar 

  13. Jacobs, S., Hazum, E., Shechter, Y., Cuatrecasas, P. 1979. Insulin receptor: Covalent labeling and identification of subunits.Proc. Natl. Acad. Sci. USA 76:4918–4921

    PubMed  Google Scholar 

  14. Kahn, C.R. 1985. The molecular mechanism of insulin action.Annu. Rev. Med. 36:429–451

    PubMed  Google Scholar 

  15. Kasuga, M., Fujita-Yamaguchi, Y., Blithe, D.L., Kahn, C.R. 1983. Tyrosine-specific protein kinase activity is associated with the purified insulin receptor.Proc. Natl. Acad. Sci. USA 80:2137–2141

    PubMed  Google Scholar 

  16. Kasuga, M., Fujita-Yamaguchi, Y., Blithe, D.L., White, M.F., Kahn, C.R. 1983. Characterization of the insulin receptor kinase purified from human placental membranes.J. Biol. Chem. 258:10973–10980

    PubMed  Google Scholar 

  17. Kasuga, M., Karlsson, F.A., Kahn, C.R. 1982. Insulin stimulates the phosphorylation of the 95,000-Dalton subunit of its own receptor.Science 215:185–187

    PubMed  Google Scholar 

  18. Kasuga, M., Zick, Y., Blith, D.L., Karlsson, F.A., Haring, H.U., Kahn, C.R. 1982. Insulin stimulation of phosphorylation of the β subunit of the insulin receptor.J. Biol. Chem. 257:9891–9894

    PubMed  Google Scholar 

  19. Koch, R., Deger, A., Jack, H.M., Klotz, K.N., Schnezle, D., Kramer, H., Kelm, S., Muller, G., Rapp, R., Weber, U. 1986. Characterization of solubilized insulin receptors from rat liver microsomes: Existence of two receptor species with different binding properties.Eur. J. Biochem. 154:281–287

    PubMed  Google Scholar 

  20. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  21. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  22. Marshall, R.N., Underwood, L.E., Voina, S.J., Foushee, D.B., Van Wyk, J.J. 1974. Characterization of the insulin and somatomedin-C receptors in human placental cell membranes.J. Clin. Endocrinol. Metab. 39:283–292

    PubMed  Google Scholar 

  23. Massague, J., Czech, M.P. 1982. Role of disulfides in the subunit structure of the insulin receptor.J. Biol. Chem. 257:6729–6738

    PubMed  Google Scholar 

  24. Morrison, B.D., Swanson, M.L., Sweet, L.J., Pessin, J.E. 1988. Insulin-dependent covalent reassociation of isolated αβ heterodimeric insulin receptors into an α2β2-heterotetrameric disulfide-linked complex.J. Biol. Chem. 263:7806–7813

    PubMed  Google Scholar 

  25. Munson, P.J., Rodbard, D. 1980. Ligand: A versatile computerized approach for characterization of ligand-binding systems.Anal. Biochem. 107:220–239

    PubMed  Google Scholar 

  26. Pessin, J.E., Mottola, C., Yu, K.-T., Czech, M.P. 1985. Subunit structure and regulation of the insulin-receptor complex.In: Molecular Basis of Insulin Action M.P. Czech, editor. pp. 3–29. Plenum, New York

    Google Scholar 

  27. Petruzzelli, L.M., Ganguly, S., Smith, C.J., Cobb, M.H., Rubin, C.S., Rosen, O.M. 1982. Insulin activates a tyrosine-specific protein kinase in extracts of 3T3-L1 adipocytes and human placenta.Proc. Natl. Acad. Sci. USA 79:6792–6796

    PubMed  Google Scholar 

  28. Petruzzelli, L., Herrera, R., Rosen, O.M. 1984. Insulin receptor is an insulin-dependent tyrosine protein kinase: Copurification of insulin-binding activity and protein kinase activity to homogeneity from human placenta.Proc. Natl. Acad. Sci. USA 81:3327–3331

    PubMed  Google Scholar 

  29. Pilch, P.F., Czech, M.P. 1980. Hormone binding alters the conformation of the insulin receptor.Science 210:1152–1153

    PubMed  Google Scholar 

  30. Pilch, P.F., Czech, M.P. 1980. The subunit structure of the high affinity insulin receptor.J. Biol. Chem. 255:1722–1731

    PubMed  Google Scholar 

  31. Pilch, P.F., O'Hare, T., Rubin, J., Boni-Schnetzler, M. 1986. The ligand binding subunit of the insulin-like growth factor 1 receptor has properties of a peripheral membrane protein.Biochem. Biophys. Res. Commun. 136:45–50

    PubMed  Google Scholar 

  32. Roth, R.A., Cassell, D.J. 1983. Insulin receptor: Evidence that it is a protein kinase.Science 219:299–301

    PubMed  Google Scholar 

  33. Scatchard, G. 1949. The attractions of proteins for small molecules and ions.Ann. N.Y. Acad. Sci. 51:660–672

    Google Scholar 

  34. Schweitzer, J.B., Smith, R.M., Jarett, L. 1980. Differences in organizational structure of insulin receptor on rat adipocyte and liver plasma membranes: Role of disulfide bonds.Proc. Natl. Acad. Sci. USA 77:4692–4696

    PubMed  Google Scholar 

  35. Shia, M.A., Pilch, P.F. 1983. The β subunit of the insulin receptor is an insulin-activated protein kinase.Biochemistry 22:717–721

    PubMed  Google Scholar 

  36. Swanson, M.L., Dudley, D.T., Boyle, T.R., Walker, P.S., Pessin, J.E. 1988. Functional differences in insulin receptors in rat adipocyte and human placental membranes.Endocrinology 122:967–975

    PubMed  Google Scholar 

  37. Sweet, L.J., Morrison, B.D., Pessin, J.E. 1987. Isolation of functional αβ heterodimers from the purified human placental α2β2 heterotetrameric insulin receptor complex.J. Biol. Chem. 262:6939–6942

    PubMed  Google Scholar 

  38. Sweet, L.J., Wilden, P.A., Pessin, J.E. 1986. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α2β2 insulin receptor subunit complex.Biochemistry 25:7068–7074

    PubMed  Google Scholar 

  39. Tamura, S., Fujita-Yamaguchi, Y., Larner, J. 1983. Insulin-like effect of trypsin on the phosphorylation of rat adipocyte insulin receptor.J. Biol. Chem. 258:14749–14752

    PubMed  Google Scholar 

  40. Ullrich, A., Bell, J.R., Chen, E.Y., Herrera, R., Petruzzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O.M., Ramachandran, J. 1985. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes.Nature (London) 313:756–761

    Google Scholar 

  41. Van Obberghen, E., Rossi, B., Kowalski, A., Gazzano, H., Ponzio, G. 1983. Receptor-mediated phosphorylation of the hepatic insulin receptor: Evidence that theM r 95,000 receptor subunit is its own kinase.Proc. Natl. Acad. Sci. USA 80:945–949

    PubMed  Google Scholar 

  42. Wang, C.-C., Hedo, J.A., Kahn, C.R., Saunders, D.T., Thamm, P., Brandenburg, D. 1982. Photoreactive insulin derivatives: Comparison of biologic activity and labeling properties of three analogues in isolated rat adipocytes.Diabetes 31:1068–1076

    PubMed  Google Scholar 

  43. Yip, C.C., Yeung, C.W.T., Moule, M.L. 1978. Photoaffinity labeling of insulin receptor of rat adiopocyte plasma membrane.J. Biol. Chem. 253:1743–1745

    PubMed  Google Scholar 

  44. Yip, C.C., Yeung, C.W.T., Moule, M.L. 1980. Photoaffinity labeling of insulin receptor proteins of liver plasma membrane preparations.Biochemistry 19:70–76

    PubMed  Google Scholar 

  45. Zick, Y., Kasuga, M., Kahn, C.R., Roth, J. 1983. Characterization of insulin-mediated phosphorylation of the insulin receptor in a cell-free system.J. Biol. Chem. 258:75–80

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swanson, M.L., Pessin, J.E. High affinity insulin binding in the human placenta insulin receptor requires αβ heterodimeric subunit interactions. J. Membrain Biol. 108, 217–225 (1989). https://doi.org/10.1007/BF01871736

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871736

Key Words

Navigation