Skip to main content
Log in

Characteristics of amino acid accumulation by isolated intestinal epithelial cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Accumulation of neutral amino acids by isolated chick epithelial cells has been studied and the results discussed in terms of the ion gradient model, and a model invoking a direct input of metabolic energy. The cells establish four- to eightfold concentration gradients of amino acids at an extracellular concentration of 1mm. The accumulation is sodium-dependent, inhibited by high extracellular potassium concentrations, and is sensitive to a variety of metabolic inhibitors. Also, amino acid uptake is depressed by actively transported sugars, and certain other amino acids, and is stimulated by phloridzin.

Cells equilibrated with valine and loaded with 30 to 40mm intracellular sodium begin immediately to actively accumulate valine when suddenly introduced to media containing 20mm sodium. The cells establish a threefold gradient of amino acid during the interval when intracellular sodium is higher than extracellular sodium.

Amino acid accumulation and22Na efflux were monitored simultaneously in cells treated with phloridzin. While phloridzin causes a 30% stimulation of amino acid uptake, no variation in the rate of22Na efflux or the steady-state level of22Na maintained by the cells can be detected. Similarly, either 2.5mm glucose or 2.5mm 3-O-methylglucose cause approximately a 50% inhibition of 1mm valine uptake, but no detectable change in steady-state cellular22Na content. Several aspects of the data seem inconsistent with concepts embodied in the ion gradient hypothesis, and it is suggested that a directly energized transport mechanism can better accommodate all of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarado, F. 1968. Amino acid transport in hamster small intestine: Site of inhibition byd-galactose.Nature 219:276.

    Google Scholar 

  2. Christensen, H.N., Riggs, T.R. 1952. Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell.J. Biol. Chem. 194:57.

    Google Scholar 

  3. Crane, R. K. 1962. Hypothesis for mechanism of intestinal active transport sugars.Fed. Proc. 21:891

    Google Scholar 

  4. Crane, R. K., Forstner, G., Eicholz, A. 1965. Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constant for intestinal sugar transportin vitro.Biochim. Biophys. Acta 109:467.

    Google Scholar 

  5. Crane, R. K., Miller, D., Bihler, I. 1961. The restrictions on possible mechanisms of intestinal active transport of sugars.In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, editors. p. 439. Academic Press Inc., N. Y.

    Google Scholar 

  6. Czaky, T. Z. 1961. Significance of sodium ions in active intestinal transport of nonelectrolytes.Amer. J. Physiol. 201:999.

    Google Scholar 

  7. Guy, M. J., Deren, J. J. 1971. Selective permeability of the small intestine for fructose.Amer. J. Physiol. 221:1051.

    Google Scholar 

  8. Harrison, H. E., Harrison, H. C. 1963. Sodium, potassium, and intestinal transport of glucose,l-tyrosine, phosphate, and calcium.Amer. J. Physiol. 205:107.

    Google Scholar 

  9. Jacquez, J. A., Schafer, J. A. 1969. Sodium and potassium electrochemical potential gradients and the transport of AIB in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 193:368.

    Google Scholar 

  10. Kimmich, G. A. 1970. Preparation and properties of mucosal epithelial cells isolated from small intestine of the chicken.Biochemistry 9:3659.

    Google Scholar 

  11. Kimmich, G. A. 1970. Active sugar accumulation by isolated intestinal epithelial cells. A new model for sodium-dependent metabolite transport.Biochemistry 9:3669.

    Google Scholar 

  12. Kimmich, G. A., Randles, J. 1973. Effect of K+ and K+ gradients on accumulation of sugars by isolated intestinal epithelial cells.J. Membrane Biol. 12:23.

    Google Scholar 

  13. Kimmich, G. A., Randles, J. 1973. Interaction between Na+-dependent transport systems for sugars and amino acids: Evidence against a role for the Na+ gradient.J. Membrane Biol. 12:47.

    Google Scholar 

  14. Kimmich, G. A., Tucker, A. M., Barrett, E., Randles, J. 1971. Interaction between Na+-dependent transport systems: Possible mechanistic significance.In: Symposium on Metabolic Regulation. Role of Membrane in Metabolic Regulation. M. A. Mehlman and R. W. Hanson, editors. Academic Press Inc., N. Y. (In press).

    Google Scholar 

  15. Layne, E. 1957. Spectrophotometric and turbidimetric methods for measuring proteins.In: Methods in Enzymology. S. P. Colowick and N. O. Kaplan, editors. Vol. 3, p. 450. Academic Press Inc., N. Y.

    Google Scholar 

  16. Munck, B. G., Schultz, S. G. 1969. Interaction between leucine and lysine transport in rabbit ileum.Biochim. Biophys. Acta 183:182.

    Google Scholar 

  17. Newey, H., Smyth, D. H. 1964. Effects of sugars on intestinal transfer of amino acids.Nature 202:400.

    Google Scholar 

  18. Oxender, D. L., Christensen, H. N. 1963. Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell.J. Biol. Chem. 238:3686.

    Google Scholar 

  19. Pietrzyk, C., Heinz, E. 1972. Some observations on the non-homogeneous distribution inside the Ehrlich cell.In: Na-Linked Transport of Organic Solutes. E. Heinz, editor. p. 84. Springer-Verlag, Berlin.

    Google Scholar 

  20. Potashner, S. J., Johnstone, R. M. 1971. Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells.Biochim. Biophys. Acta 233:91.

    Google Scholar 

  21. Read, C. P. 1967. Studies on membrane transport. I. A. common transport system for sugars and amino acids.Biol. Bull., Woods Hole 133:630.

    Google Scholar 

  22. Riggs, T. R., Walker, L. M., Christensen, H. N. 1958. Potassium migration and amino acid transport.J. Biol. Chem. 233:1479.

    Google Scholar 

  23. Schafer, J. A. 1972. An examination of the energetic adequacy of the ion gradient hypothesis for non-electrolyte transport.In: Na-Linked Transport of Organic Solutes. E. Heinz, editor. p. 68. Springer-Verlag, Berlin.

    Google Scholar 

  24. Schafer, J. A., Heinz, E. 1971. The effect of reversal of Na+ and K+ electrochemical potential gradients on the active transport of amino acids in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 249:15.

    Google Scholar 

  25. Schafer, J. A., Jacquez, J. A. 1968. Evidence against the sodium gradient hypothesis for amino acid transport in the Ehrlich ascites cell.Fed. Proc. 27:516.

    Google Scholar 

  26. Schultz, S. G., Curran, P. F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637.

    Google Scholar 

  27. Schultz, S. G., Curran, P. F., Chez, R. A., Fuisz, R. E. 1967. Alanine and sodium fluxes across mucosal border of rabbit ileum.J. Gen. Physiol. 50:1241.

    Google Scholar 

  28. Schultz, S. G., Fuisz, R. E., Curran, P. F. 1966. Amino acid and sugar transport in rabbit ileum.J. Gen. Physiol. 49:849.

    Google Scholar 

  29. Stirling, C. E., Kinter, W. B. 1967. High resolution radioautography of galactose-H3 accumulation in rings of hamster intestine.J. Cell Biol. 35:585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucker, A.M., Kimmich, G.A. Characteristics of amino acid accumulation by isolated intestinal epithelial cells. J. Membrain Biol. 12, 1–22 (1973). https://doi.org/10.1007/BF01869989

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869989

Keywords

Navigation