Skip to main content
Log in

Efficiency, Na+/K+ selectivity and temperature dependence of ion transport through lipid membranes by (221)C10-Cryptand, an ionizable mobile carrier

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The kinetics of Na+ and K+ transport across the membrane of large unilamellar vesicles (LUV) were determined at two pH's when transport was induced by (221)C10-cryptand (diaza-1,10-decyl-5-pentaoxa-4,7,13,16,21-bicyclo [8.8.5.] tricosane) at various temperatures, and by nonactin at 25°C and (222)C10-cryptand at 20 and 25°C. The rate of Na+ and K+ transport by (221)C10 saturated with the cation and carrier concentrations. Transport was noncooperative and exhibited selectivity for Na+ with respect to K+. The apparent affinity of (221)C10 for Na+ was higher and less pH-dependent than that for K+, and seven times higher than that of (222)C10 for K+ ions (20.5vs. 1.7 kcal·mole). The efficiency of (221)C10 transport of Na+ was pH-and carrier concentration-dependent, and was similar to that of nonactin; its activation energy was similar to that for (222)C10 transport of K+ (35.5 and 29.7 kcal · mole−1, respectively). The reaction orders in cationn(S) and in carrierm(M), respectively, increased and decreased as the temperature rose, and were both independent of carrier or cation concentrations; in most cases they varied slightly with the pH.n(S) varied with the cation at pH 8.7 and with the carrier for Na+ transport only, whilem(M) always depended on the type of cation and carrier. Results are discussed in terms of the structural, physico-chemical and electrical characteristics of carriers and complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazett, H.C., Love, L., Newton, M., Eisenberg, L., Day, R., Froster, R. 1948. Temperature changes in blood flowing in arteries and veins in man.J. Appl. Physiol. 1:3–19

    Google Scholar 

  • Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339–364

    Google Scholar 

  • Blok, M.C., De Grier, J., Van Deenen, L.L.M. 1974. Kinetics of the valinomycin-induced potassium ion leak from liposomes with potassium thiocyanate enclosed.Biochim. Biophys. Acta 367:210–224

    Google Scholar 

  • Bogatsky, A.V., Lukyanenko, N.G., Nazaroy, E.I., Tsymbal, I.P., Oleshko, A.Y., Iontov, I.A., Zakhariya, A.N., Nazarov, V.M., Frontaseyva, M.V., Peresedov, V.F. 1984. Biological activity of macroheterocycles. 1. Biological activity of cryptate [222].Biol. Membr. 1:677–683

    Google Scholar 

  • Castaing, M., Morel, F., Lehn, J.M. 1986. Transport of alkali cations through thin lipid membranes by (222)C10-cryptand, an ionizable mobile carrier.J. Membrane Biol. 89:251–267

    Google Scholar 

  • Ciani, S., Eisenman, G., Szabo, G. 1969. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranes.J. Membrane Biol. 1:1–36

    Google Scholar 

  • Clement, D., Damm, F., Lehn, J.M. 1976. Lipophilic cryptates: Salt solubilization and anion activation.Heterocycles 5:477–484

    Google Scholar 

  • Cox, B.G., Garcia-Rosas, J., Schneider, H. 1981. Solvent dependence of kinetics of formation and dissociation of cryptate complexes.J. Am. Chem. Soc. 103:1054–1059

    Google Scholar 

  • Cox, B.G., Schneider, I., Schneider, H. 1980. Rate and equilibrium data for the complex formation of alkali metal ions with the cryptand (221) in methanol.Ber. Bunsenges. Phys. Chem. 84:470–474

    Google Scholar 

  • Deleers, M., Malaisse, W.J. 1982. Influence of membrane viscosity on the lateral and transverse mobility of carboxylic ionophores.Chem. Phys. Lipids 31:227–235

    Google Scholar 

  • Dobler, M. 1981. Ionophores and their Structures. J. Wiley and Sons, New York

    Google Scholar 

  • Dobler, M., Phizackerley, R.P. 1974. The crystal structure of the NaNCS complex of nonactin.Helv. Chim. Acta 57:664–674

    Google Scholar 

  • Düzgünes, N., Wilschut, J., Hong, K., Fraley, R., Perry, C., Friend, D.S., James, T.L., Papahadjopoulos, D. 1983. Physicochemical characterization of large unilamellar phospholipid vesicles prepared by reverse-phase evaporation.Biochim. Biophys. Acta 732:289–299

    Google Scholar 

  • Elamrani, K., Blume, A. 1983. Effect of the lipid phase transition on the kinetics of H+/OH diffusion across phosphatidic acid bilayers.Biochim. Biophys. Acta 727:22–30

    Google Scholar 

  • Ginsburg, S., Noble, D. 1974. The activation enthalpies for ion conductance systems in lipid bilayer membranes.J. Membrane Biol. 18:163–176

    Google Scholar 

  • Ginsburg, H., Stark, G. 1976. Facilitated transport of di- and trinitrophenolate ions across lipid membranes by valinomycin and nonactin.Biochim. Biophys. Acta 455:685–700

    Google Scholar 

  • Haynes, D.H., Wiens, T., Pressman, B.C. 1974. Turnover numbers for ionophore-catalyzed cation transport across the mitochondrial membrane.J. Membrane Biol. 18:23–38

    Google Scholar 

  • Henderson, P.J.F., McGivan, J.D., Chappell, J.B. 1969. The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes.Biochem. J. 111:521–535

    Google Scholar 

  • Hladky, S.B. 1975a. Test of the carrier model for ion transport by nonactin and trinactin.Biochim. Biophys. Acta 375:327–349

    Google Scholar 

  • Hladky, S.B. 1975b. Steady-state ion transport by nonactin and trinactin.Biochim. Biophys. Acta 375:350–362

    Google Scholar 

  • Kauffmann, E., Lehn, J.M., Sauvage, J.P. 1976. Enthalpy and entropy of formation of alkali and alkaline-earth macrobicyclic cryptate complexes [1].Helv. Chim. Acta 59:1099–1111

    Google Scholar 

  • Kilbourn, B.T., Dunitz, J.D., Pioda, L.A.R., Simon, W. 1967. Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport properties.J. Mol. Biol. 30:559–563

    Google Scholar 

  • Kirch, M. 1980. Transport des cations alcalins par l'intermédiaire des cryptates. II: Les ligands transporteurs étudiés.In: Thèse de Doctorat ès Sciences Physiques. pp. 38–95. Strasbourg, France

  • Kirch, M., Lehn, J.M. 1975. Selective transport of alkali metal cations through a liquid membrane by macrobicyclic carriers.Angew. Chem. Int. Ed. Engl. 14:555–556

    Google Scholar 

  • Knoll, W., Stark, G. 1977. Temperature-jump experiments on thin lipid membranes in the presence of valinomycin.J. Membrane Biol. 37:13–28

    Google Scholar 

  • Krasne, S., Eisenman, G., Szabo, G. 1971. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin.Science 174:412–415

    Google Scholar 

  • Laprade, R., Grenier, F., Lapointe, J.Y., Asselin, S. 1982. Effects of variation of ion and methylation of carrier on the rate constants of macrotetralide-mediated ion transport in lipid bilayers.J. Membrane Biol. 68:191–206

    Google Scholar 

  • Lehn, J.M. 1973. Design of organic complexing agents.Struct. Bond. 16:1–69

    Google Scholar 

  • Lehn, J.M. 1978. Cryptates The chemistry of macropolycyclic inclusion complexes.Acc. Chem. Res. 11:49–57

    Google Scholar 

  • Lehn, J.M. 1979. Macrocyclic receptor molecules: Aspects of chemical reactivity. Investigations into molecular catalysis and transport processes.Pure Appl. Chem. 51:979–997

    Google Scholar 

  • Lehn, J.M. 1983. Physical Chemistry of Transmembrane Ion Motions. G. Spach, editor. pp. 181–207. Elsevier, Amsterdam

    Google Scholar 

  • Lehn, J.M., Sauvage, J.P. 1975. [2]-Cryptates: Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes.J. Am. Chem. Soc. 97:6700–6707

    Google Scholar 

  • Magin, R.L., Niesman, M.R. 1984. Temperature-dependent permeability of large unilamellar liposomes.Chem. Phys. Lipids 34:245–256

    Google Scholar 

  • Mathieu, F., Metz, B., Moras, D., Weiss, R. 1978. Cavities in macrobicyclic ligands and complexation selectivity.1Crystal structures of two cryptates, [Na+⊂221].SCN and [K+⊂221].SCN−2.J. Am. Chem. Soc. 100:4412–4416

    Google Scholar 

  • Papahadjopoulos, D., Jacobson, K., Nir, S., Isac, T. 1973. Phase transition in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol.Biochim. Biophys. Acta 311:330–348

    Google Scholar 

  • Papahadjopoulos, D., Nir, S., Ohki, S. 1971. Permeability properties of phospholipid membranes: Effect of cholesterol and temperature.Biochim. Biophys. Acta 266:561–583

    Google Scholar 

  • Pizer, R. 1978. The dynamics of cryptand protonation.J. Am. Chem. Soc. 100:4239–4241

    Google Scholar 

  • Simon, S.A., Lis, L.J., Kauffman, J.W., MacDonald, R.C. 1975. A calorimetric and monolayer investigation of the influence of ions on the thermodynamic properties of phosphatidyl choline.Biochim. Biophys. Acta 375:317–326

    Google Scholar 

  • Slater, J.L., Lichtenberg, D., Thompson, T.E. 1983. The internal aqueous volume of small unilamellar vesicles changes at the phase transition temperature of the phospholipid.Biochim. Biophys. Acta 734:125–128

    Google Scholar 

  • Stark, G., Benz, R., Pohl, G.W., Janko, K. 1972. Valinomycin as a probe for the study of structural changes of black lipid membranes.Biochim. Biophys. Acta 266:603–612

    Google Scholar 

  • Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.Biophys. J. 11:981–994

    Google Scholar 

  • Szoka, F., Papahadjopoulos, D. 1978. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.Proc. Natl. Acad. Sci. USA 75:4194–4198

    Google Scholar 

  • Tabeta, R., Saitô, H. 1985. High-resolution solid-state13C NMR study of free and metal-complexed macrocyclic antibiotic ionophores valinomycin, nonactin, and tetranactin: Conformational elucidation in solid and solution by conformation-dependent13C chemical shifts.Biochemistry 24: 7696–7702

    Google Scholar 

  • Züst, C.U., Frü, P.U., Simon, W. 1973. Complex formation of macrotetrolide carrier antibiotics with cations studied by microcalorimetry and vapour pressure osmometry.Helv. Chim. Acta 56:495–499

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castaing, M., Lehn, JM. Efficiency, Na+/K+ selectivity and temperature dependence of ion transport through lipid membranes by (221)C10-Cryptand, an ionizable mobile carrier. J. Membrain Biol. 97, 79–95 (1987). https://doi.org/10.1007/BF01869415

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869415

Key Words

Navigation