Skip to main content
Log in

Effect of sodium deprivation on contraction and charge movement in frog skeletal muscle fibres

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Measurements of isometric tension were performed in single twitch skeletal muscle fibres and the effect of extracellular Na+ removal on contraction was investigated. Na+ withdrawal brought about an increase in the amplitude of K+ contractures and their time course became faster. The potentiation of K+ contractures depended strongly on extracellular Ca2+ and developed slowly following an exponential time course with a time constant of approximately 8 min. Removal of extracellular Na+ greatly increased the amplitude of caffeine contractures and lowered its threshold: caffeine (0.5 mM) had no effect on resting tension in Ringer's but produced contractures in Na+-free solutions. Intramembrane charge movement (charge 1) was monitored in contracting voltage-clamped segments of frog skeletal muscle fibres using the triple-Vaseline-gap technique. Movement of charge 1 did not depend on the presence of extracellular Na+. However, the mechanical threshold decreased by approximately 10 mV at several pulse durations and the charge which produced just detectable contractions decreased by approximately 5 nC μF−1 in the absence of extracellular Na+. Intracellular heparin (40 mg ml−1) increased the mechanical threshold by approximately 20 mV without affecting the movement of charge 1. The effect of Na+-free solutions on the mechanical threshold was additive to that of heparin. It is concluded that the effects of Na+-withdrawal on contraction take place at a location beyond the voltage sensor of excitation-contraction coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H. &Peres, A. R. (1977) A gating signal for the potassium channel.Nature 267, 800–4.

    PubMed  Google Scholar 

  • Adrian, R. H., Chandler, W. K. &Rakowski, R. F. (1976) Charge movement and mechanical repriming in skeletal muscle.J. Physiol. (Lond.) 254, 361–88.

    Google Scholar 

  • Almers, W., McCleskey, E. W. &Palade, P. T. (1984) A non-selective cation conductance blocked by micromolar external calcium ions.J. Physiol. (Lond.) 353, 565–83.

    Google Scholar 

  • Brum, G., Rios, E. &Stefani, E. (1988) The effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres.J. Physiol. (Lond.) 398, 441–73.

    Google Scholar 

  • Caillé, J., Ildefonse, M. &Rougier, O. (1985) Excitation-contraction coupling in skeletal muscle.Prog. Mol. Biol. 46, 185–239.

    Google Scholar 

  • Caputo, C. (1983) Pharmacological investigations of excitation-contraction coupling. InHandbook of Physiology (edited by Peachey, L. D., Adrian, R. H. & Geiger, S. R.), pp. 688. Bedhesda: American Physiological Society.

    Google Scholar 

  • Caputo, C. &Bolaños, P. (1978) Effect of external sodium and calcium on calcium efflux in frog striated muscle.J. Memb. Biol. 41, 1–14.

    Google Scholar 

  • Caputo, C. &Bolaños, P. (1990) Ultraslow contractile inactivation in frog skeletal muscle fibres.J. Gen. Physiol. 96, 47–56.

    PubMed  Google Scholar 

  • Chandler, W. K., Rakowski, R. F. &Schneider, M. F. (1976) Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle.J. Physiol. (Lond.) 254, 285–316.

    Google Scholar 

  • Cosmos, E. &Harris, E. J. (1961)In vitro studies of the gain and exchange of calcium in frog skeletal muscle.J. Gen. Physiol. 44, 1121–30.

    Google Scholar 

  • Cota, G. &Stefani, E. (1981) Effects of external calcium reduction on the kinetics of potassium contractures in frog twitch muscle fibres.J. Physiol. (Lond.) 317, 303–16.

    Google Scholar 

  • Curtis, B. A. (1988) Na/Ca exchange and excitation-contraction coupling in frog fast fibres.J. Muscle Res. Cell Motil. 9, 415–27.

    PubMed  Google Scholar 

  • Delay, M., Ribalet, B. &Vergara, J. (1986) Caffeine potentiation of calcium release in frog skeletal muscle fibres.J. Physiol. (Lond.) 375, 535–59.

    Google Scholar 

  • Delay, M., Garcia, D. E. &Sanchez, J. A. (1990) The effects of lyotropic anions on charge movement, calcium currents and calcium signals in frog skeletal muscle fibres.J. Physiol. (Lond.) 425, 449–69.

    Google Scholar 

  • Donoso, P. &Hidalgo, C. (1989) Sodium-calcium exchange in transverse tubules isolated from frog skeletal muscle.Biochim. Biophys. Acta 978, 8–16.

    PubMed  Google Scholar 

  • Endo, M. (1985) Calcium release from sarcoplasmic reticulum.Curr. Top. Membr. Trans. 25, 181–229.

    Google Scholar 

  • Estrada, F. &Sanchez, J. A. (1991) The effect of amiloride on the resting potential and the electrical constants of frog skeletal muscle fibres.J. Physiol. (Lond.) 433, 705–17.

    Google Scholar 

  • Garcia, M. C., Elias, D. &Sanchez, J. A. (1989) Efecto de la ausencia de los iones de sodio sobre la contraccion de las fibras musculares esqueleticas del anfibio.Memorias I Congreso Iberoamericano de Biofisica, pp. 61.

  • Ghosh, T. K., Elis, P. S., Mullaney, J. M., Ebert, C. L. &Gill, D. L. (1988) Competitive, reversible and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin.J. Biol. Chem. 263, 11075–9.

    PubMed  Google Scholar 

  • Gilbert, J. R. &Meissner, G. (1982) Sodium-calcium exchange in skeletal muscle sarcolemmal vesicles.J. Membr. Biol. 69, 77–84.

    PubMed  Google Scholar 

  • Godinez, R., Garcia, M. C. &Sanchez, J. A. (1987) Low external sodium decreases mechanical threshold in frog skeletal muscle.Biophys. J. 51, 98a.

    Google Scholar 

  • Hodgkin A. L. &Huxley, A. F. (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo.J. Physiol. (Lond.) 116, 497–506.

    Google Scholar 

  • Hodgkin, A. L. &Horowicz, P. (1959) The influence of potassium and chloride ions on the membrane potential of single muscle fibres.J. Physiol. (Lond.) 148, 127–60.

    Google Scholar 

  • Hodgkin, A. L. &Horowicz, P. (1960) Potassium contractures in single muscle fibres.J. Physiol. (Lond.) 153, 386–403.

    Google Scholar 

  • Horowicz, P. &Schneider, M. F. (1981a) Membrane charge moved at contraction thresholds in skeletal muscle fibres.J. Physiol. (Lond.) 314, 595–633.

    Google Scholar 

  • Horowicz, P. &Schneider, M. F. (1981b) Membrane charge movement in contracting and non-contracting skeletal muscle fibres.J. Physiol. (Lond.) 314, 565–93.

    Google Scholar 

  • Huang, C. L. H. (1988) Intramembrane charge movements in skeletal muscle.Physiol. Rev. 68, 1197–247.

    PubMed  Google Scholar 

  • Hui, C. S. (1983) Pharmacological studies of charge movement in frog skeletal muscle.J. Physiol. 337, 509–29.

    PubMed  Google Scholar 

  • Hui, C. S. (1991). Factors affecting the appearance of the hump charge movement component in frog cut twitch fibres.J. Gen. Physiol. 98, 315–47.

    PubMed  Google Scholar 

  • Kirsch, G. E., Nichols, R. A. &Nakajima, S. (1977) Delayed rectification in the transverse tubules. Origin of the late after-potential.J. Gen. Physiol. 70, 1–21.

    PubMed  Google Scholar 

  • Klein, M. G., Simon, B. J. &Schneider, M. F. (1990) Effects of caffeine on calcium release from the sarcoplasmic reticulum in frog skeletal muscle fibres.J. Physiol. (Lond.) 425, 599–626.

    Google Scholar 

  • Kovacs, L. &Szücs, G. (1983) Effect of caffeine on intra-membrane charge movement and calcium transients in cut skeletal muscle fibres of the frog.J. Physiol. (Lond.) 341, 559–78.

    Google Scholar 

  • Leblanc, N. &Hume, J. R. (1990) Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum.Science 248, 372–6.

    PubMed  Google Scholar 

  • Lüttgau, H. C. &Spiecker, W. (1979) The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog.J. Physiol. (Lond.) 296, 411–29.

    Google Scholar 

  • Melzer, W., Schneider, M. F., Simon, B. J. &Szücs, G. (1986) Intramembrane charge movement and calcium release in frog skeletal muscle.J. Physiol. (Lond.) 373, 481–511.

    Google Scholar 

  • Melzer, W., Rios, E. &Schneider, M. F. (1987) A general procedure for determining the rate of calcium release from the sarcoplasmic reticulum in skeletal muscle fibres.Biophys. J. 51, 849–63.

    PubMed  Google Scholar 

  • Miledi, R., Parker, I. &Zhu, P. H. (1983) Calcium transients studied under voltage-clamp control in frog twitch muscle fibres.J. Physiol. (Lond.) 340, 649–80.

    Google Scholar 

  • Miledi, R., Parker, I. &Zhu, P. H. (1984) Extracellular ions and excitation-contraction coupling in frog twitch muscle fibres.J. Physiol. (Lond.) 351, 687–710.

    Google Scholar 

  • Pape, P. C., Konishi, M., Baylor, S. M. &Somlyo, A. P. (1988) Excitation-contraction coupling in skeletal muscle injection with the IP3 blocker, heparin.FEBS Lett. 235, 57–62.

    PubMed  Google Scholar 

  • Pizarro, G., Fitts, R., Uribe, I. &Rios, E. (1988) The voltage dependence of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity.J. Gen. Physiol. 94, 405–28.

    Google Scholar 

  • Rojas, C. &Jaimovich, E. (1990) Calcium release modulated by inositol trisphosphate in ruptured fibres from frog skeletal muscle.Pflügers Arch-Eur. J. Physiol. 416, 296–304.

    Google Scholar 

  • Sanchez, J. A. &Stefani, E. (1978). Inward calcium current in twitch muscle fibres of the frog.J. Physiol. (Lond.) 283, 197–209.

    Google Scholar 

  • Schneider, M. F. &Simon, B. J. (1988) Inactivation of calcium release from the sarcoplasmic reticulum in frog skeletal muscle.J. Physiol. (Lond.) 405, 727–45.

    Google Scholar 

  • Smith, J. B., Dwyer, S. D., Smith, L. (1989) Decreasing extracellular Na+ concentration triggers inositol polyphosphate production and Ca2+ mobilization.J. Biol. Chem. 264, 831–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, M.C., Diaz, A.F., Godinez, R. et al. Effect of sodium deprivation on contraction and charge movement in frog skeletal muscle fibres. J Muscle Res Cell Motil 13, 354–365 (1992). https://doi.org/10.1007/BF01766463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01766463

Keywords

Navigation