Skip to main content
Log in

DHP receptors and excitation-contraction coupling

  • Review
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams, B. A., Tanabe, T., Mikami, A., Numa, S. &Beam, K. G. (1990) Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs.Nature 346, 569–72.

    PubMed  Google Scholar 

  • Almers, W. (1978) Gating currents and charge movements in excitable membranes.Reviews Physiol., Biochem. Pharmacol. 82, 97–190.

    Google Scholar 

  • Anderson, K., Grunwald, R., El-Hashem, A., Sealock, R. &Meissner, G. (1990) High affinity ryanodine and PN200-110 binding to rabbit skeletal muscle triads.Biophys. J. 57, 171a.

    Google Scholar 

  • Appelt, D., Buenviaje, B., Champ, C. &Franzini-Armstrong, C. (1989) Quantitation of ‘junctional feet’ content in two types of muscle fiber from hind limb muscles of the rat.Tissue & Cell 21, 783–94.

    Google Scholar 

  • Arreola, J., Calvo, J., Garcia, M. C. &Sanchez, J. A. (1987) Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate.J. Physiol. 393, 307–30.

    PubMed  Google Scholar 

  • Beam, K. G., Knudson, C. M. &Powell, J. A. (1986) A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells.Nature 320, 168–70.

    PubMed  Google Scholar 

  • Beam, K. G. &Knudson, C. M. (1988) Effect of postnatal development on calcium currents and slow charge movement in mammalian skeletal muscle.J. Gen. Physiol. 91, 799–815.

    PubMed  Google Scholar 

  • Bean, B. P., Nowycky, M. C. &Tsien, R. W. (1984) β-Adrenergic modulation of calcium channels in frog ventricular heart cells.Nature 307, 371–5.

    PubMed  Google Scholar 

  • Bean, B. P. &Rios, E. (1989) Nonlinear charge movement in mammalian cardiac ventricular cells.J. Gen. Physiol. 94, 65–93.

    PubMed  Google Scholar 

  • Block, B. A., Imagawa, T., Campbell, K. P. &Franzini-ArmStrong, C. (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle.J. Cell Biol. 107, 2587–600.

    PubMed  Google Scholar 

  • Campbell, K. P., Leung, A. T. &Sharp, A. H. (1988) The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel.Trends Neurosci. 11, 425–30.

    PubMed  Google Scholar 

  • Catterall, W. A. (1991) Functional subunit structure of voltagegated calcium channels.Science 253, 1499–500.

    PubMed  Google Scholar 

  • Chang, C. F., Gutierrez, L. M., Mundina-Weilenmann, C. &Hosey, M. M. (1991) Dihydropyridine-sensitive calcium channels from skeletal muscle. II. Functional effects of differential phosphorylation of channel subunits.J. Biol. Chem. 266, 16395–400.

    PubMed  Google Scholar 

  • Chen, W. &Hui, C. S. (1991) Differential blockade of charge movement components in frog cut twitch fibres by nifedipine.J. Physiol. 444, 579–603.

    PubMed  Google Scholar 

  • Cohen, N. M. &Lederer, W. J. (1988) Changes in the calcium current of rat heart ventricular myocytes during development.J. Physiol. 406, 115–46.

    PubMed  Google Scholar 

  • Coronado, R. &Affolter, H. (1986) Characterization of dihydropyridine-sensitive calcium channels from purified skeletal muscle transverse tubules. In:Ion Channel Reconstitution (edited byMiller, C.) pp. 483–505. New York: Plenum Press.

    Google Scholar 

  • Cullen, M. T., Hollingworth, S. &Marshall, M. W. (1984) A comparative study of the transverse tubular system of the rat extensor digitorum longus and soleus muscles.J. Anat. 138, 297–308.

    PubMed  Google Scholar 

  • Curtis, B. M. &Catterall, W. A. (1986) Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules.Biochem. 25, 3077–83.

    Google Scholar 

  • Damiani, E., Tobaldin, G., Volpe, P. &Margreth, A. (1991) Quantitation of ryanodine receptor of rabbit skeletal muscle, heart and brain.Biochem. Biophys. Res. Comms. 175, 858–65.

    Google Scholar 

  • De Jongh, K. S., Merrick, D. K. &Catterall, W. A. (1989) Subunits of purified calcium channels: A 212-kDa form of α1 and partial amino acid sequence of a phosphorylation site of an independent β subunit.Proc. Nat. Acad. Sci. USA 86, 8585–9.

    PubMed  Google Scholar 

  • Dulhunty, A. F. &Gage, P. W. (1983) Asymmetrical charge movement in slow- and fast-twitch mammalian muscle fibres in normal and paraplegic rat.J. Physiol. 341, 213–31.

    PubMed  Google Scholar 

  • Dulhunty, A. F. &Gage, P. W. (1988) Effects of extracellular calcium concentration and dihydropyridines on contraction in mammalian skeletal muscle.J. Physiol. 399, 63–80.

    PubMed  Google Scholar 

  • Dulhunty, A. F., Gage, P. W. &Lamb, G. D. (1986) Differential effects of thyroid hormone on T-tubules and terminal cisternae in rat muscles: an electrophysiological and morphometric analysis.J. Muscle Res. Cell Motil. 7, 225–36.

    PubMed  Google Scholar 

  • Dunn, S. M. J. &Bladen, C. (1991) Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: evidence for low-affinity sites and for the involvement of G proteins.Biochem. 30, 5716–21.

    Google Scholar 

  • Eisenberg, R. S., Mccarthy, R. T. &Milton, R. L. (1983) Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600.J. Physiol. 341, 495–505.

    PubMed  Google Scholar 

  • Fabiato, A. &Fabiato, F. (1978) Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and new-born rat ventricles.Ann. New York Acad. Sci. 307, 491–521.

    Google Scholar 

  • Feldmeyer, D. &Lüttgau, H. C. (1988) The effect of perchlorate on Ca currents and mechanical force in skeletal muscle fibres.Pflügers Archiv 411, R190.

    Google Scholar 

  • Feldmeyer, D., Melzer, W., Pohl, B. &Zöllner, P. (1990) Fast gating kinetics of the slow Ca2+ current in cut skeletal muscle fibres of the frog.J. Physiol. 425, 347–67.

    PubMed  Google Scholar 

  • Field, A. C., Hill, C. &Lamb, G. D. (1988) Asymmetric charge movement and calcium currents in ventricular myocytes of neonatal rat.J. Physiol 406, 277–97.

    PubMed  Google Scholar 

  • Fleischer, S. &Inui, M. (1989) Biochemistry and biophysics of excitation-contraction coupling.Ann. Review Biophys. Biophys. Chem. 18, 333–64.

    Google Scholar 

  • Flockerzi, V., Oeken, H.-J., Hofmann, F., Pelzer, D., Cavalie, A. &Trautwein, W. (1986) Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel.Nature 323, 66–8.

    PubMed  Google Scholar 

  • Franzini-Armstrong, C. (1975) Membrane particles and transmission at the triad.Fed. Procs. 34(5), 1382–9.

    Google Scholar 

  • Franzini-Armstrong, C., Ferguson, D. G. &Champ, C. (1988) Discrimination between fast- and slow-twitch fibres of guinea pig skeletal muscle using the relative surface density of junctional transverse tubule membrane.J. Muscle Res. Cell Motil. 9, 403–14.

    PubMed  Google Scholar 

  • Franzini-Armstrong, C., Pincon-Raymond, M. &Rieger, F. (1991) Muscle fibres from dysgenic mouse in vivo lack a surface component of peripheral couplings.Develop. Biol. 146, 364–76.

    PubMed  Google Scholar 

  • Gallant, E. M. &Goettl, V. M. (1985) Effects of calcium antagonists on mechanical responses of mammalian skeletal muscles.Eur. J. Pharmacol. 117, 259–65.

    PubMed  Google Scholar 

  • Glossmann, H., Ferry, D. R. &Boschek, C. B. (1983) Purification of the putative calcium channel from skeletal muscle with the aid of [3H]-nimodipine binding.Naunyn-Schmiedeberg's Archiv Pharmacol. 323, 1–11.

    Google Scholar 

  • Gomolla, M., Gottschalk, G. &Lüttgau, H. Ch. (1983) Perchlorate-induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres.J. Physiol. 343, 197–214.

    PubMed  Google Scholar 

  • Green, F. J., Farmer, B. B., Wiseman, G. L., Jose, M. J. L. &Watanabe, A. M. (1985) Effect of membrane depolarization on binding of [3H]-nitrendipine to rat cardiac myocytes.Circ. Res. 56, 576–85.

    PubMed  Google Scholar 

  • Gutierrez, L. M., Brawley, R. M. &Hosey, M. M. (1991) Dihydropyridine-sensitive calcium channels from skeletal muscle.J. Biol Chem. 266, 16387–94.

    PubMed  Google Scholar 

  • Hadley, R. W. &Lederer, W. J. (1989) Intramembrane charge movement in guinea-pig and rat ventricular myocytes.J. Physiol. 415, 601–24.

    PubMed  Google Scholar 

  • Hollingworth, S. &Marshall, M. W. (1981) A comparative study of charge movements in rat and frog skeletal muscle fibres.J. Physiol. 321, 583–602.

    PubMed  Google Scholar 

  • Huang, C. L.-H. (1990) Voltage-dependent block of charge movement component by nifedipine in frog skeletal muscle.J. Gen. Physiol. 96, 535–57.

    PubMed  Google Scholar 

  • Hui, C. S. (1990) D600 binding sites on voltage-sensors for excitation-contraction coupling in frog skeletal muscle are intracellular.J. Muscle Res. Cell Motil. 11, 471–88.

    PubMed  Google Scholar 

  • Hui, C. S., Milton, R. L. &Eisenberg, R. S. (1984) Charge movement in skeletal muscle fibers paralyzed by the calcium-entry blocker D600.Proc. Nat. Acad. Sci. USA 81, 2582–5.

    PubMed  Google Scholar 

  • Hymel, L., Striessnig, J., Glossmann, H. &Schindler, H. (1988) Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers.Proc. Nat. Acad. Sci. USA 85, 4290–4.

    PubMed  Google Scholar 

  • Kokubun, S., Prod'hom, B., Porzig, H. &Reuter, H. (1986) Studies on Ca channels in intact cardiac cells: voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers.Mol. Pharmacol. 30, 571–84.

    PubMed  Google Scholar 

  • Lacerda, A. E., Kim, H. S., Ruth, P., Perez-Reyes, E., Flockerzi, V., Hofmann, F., Birnbaumer, L. &Brown, A. M. (1991) Normalization of current kinetics by interaction between the α1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel.Nature 352, 527–30.

    PubMed  Google Scholar 

  • Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q.-Y. &Meissner, G. (1988) Purification and reconstitution of the calcium release channel from skeletal muscle.Nature 331, 315–9.

    PubMed  Google Scholar 

  • Lamb, G. D. (1985) The effect of nifedipine on asymmetric charge movement in rabbit muscle.Proc. Australian Physiol. Pharmacol. Soc. 16, 2P.

  • Lamb, G. D. (1986) Components of charge movement in rabbit muscle: the effect of tetracaine and nifedipine.J. Physiol. 376, 85–100.

    PubMed  Google Scholar 

  • Lamb, G. D. (1987) Asymmetric charge movement in polarized and depolarized muscle fibres of the rabbit.J. Physiol. 383, 349–67.

    PubMed  Google Scholar 

  • Lamb, G. D. (1991) Ca2+ channels or voltage-sensors?Nature 352, 113.

    PubMed  Google Scholar 

  • Lamb, G. D. &Walsh, T. (1987) Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit.J. Physiol. 393, 595–617.

    PubMed  Google Scholar 

  • Lee, Y. S., Ondrias, K., Duhl, A.J., Ehrlich, B. E. &Kim, D. H. (1991) Comparison of calcium release from sarcoplasmic reticulum of slow and fast twitch muscles.J. Membr. Biol. 122, 155–63.

    PubMed  Google Scholar 

  • Leung, A. T., Imagawa, T., Block, B., Franzini-Armstrong, C. &Campbell, K. P. (1988) Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle.J. Biol. Chem. 263, 994–1001.

    PubMed  Google Scholar 

  • Lew, W. Y. W., Hryshko, L. V. &Bers, D. M. (1991) Dihydropyridine receptors are primarily functional L-type calcium channels in rabbit ventricular myocytes.Circul. Res. 69, 1139–45.

    Google Scholar 

  • Lüttgau, H. C., Gottschalk, G., Kovacs, L. &Fuxreiter, M. (1983) How perchlorate improves excitation-contraction coupling in skeletal muscle fibers.Biophys. J. 43, 247–9.

    PubMed  Google Scholar 

  • Lüttgau, H. Ch. &Stephenson, D. G. (1986) Ion movements in skeletal muscle in relation to the activation of contraction. InPhysiology of Membrane Disorders (edited byAndreoli, T. E., Hoffmann, J. F., Fanestil, D. D. &Schulz, S. G.) pp. 449–468. New York: Plenum Press.

    Google Scholar 

  • Ma, J., Mundiña-Weilenmann, C., Hosey, M. M. &Rios, E. (1991) Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 1. Kinetics and voltage depen-dence of gating.Biophys. J. 60, 890–901.

    PubMed  Google Scholar 

  • Mccleskey, E. W. (1985) Calcium channels and intracellular calcium release are pharmacologically different in frog skeletal muscle.J. Physiol. 361, 231–49.

    PubMed  Google Scholar 

  • Melzer, W., Schneider, M. F., Simon, B. J. &Szucs, G. (1986) Intramembrane charge movement and calcium release in frog skeletal muscle.J. Physiol. 373, 481–511.

    PubMed  Google Scholar 

  • Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S. &Numa, S. (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel.Nature 340, 230–3.

    PubMed  Google Scholar 

  • Mobley, B. A. &Eisenberg, B. R. (1975) Sizes of components in frog skeletal muscle measured by methods of stereology.J. Gen. Physiol 66, 31–45.

    PubMed  Google Scholar 

  • Mundiña-Weilenmann, C., Ma, J., Rios, E. &Hosey, M. M. (1991) Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 2. Effects of phosphorylation by cAMP-dependent protein kinase.Biophys. J. 60, 902–9.

    PubMed  Google Scholar 

  • Neuhaus, R., Rosenthal, R. &Lüttgau, H. Ch. (1990) The effects of dihydropyridine derivatives on force and Ca2+ current in frog skeletal muscle fibres.J. Physiol. 427, 187–209.

    PubMed  Google Scholar 

  • Nunoki, K., Florio, V. &Catterall, W. A. (1989) Activation of purified calcium channels by stoichiometric protein phosphorylation.Proc. Nat. Acad. Sci. USA 86, 6816–20.

    PubMed  Google Scholar 

  • Olivares, E. B., Tanksley, S. J., Airey, J. A., Beck, C. F., Ouyang, Y., Deerinck, T. J., Ellisman, M. H. &Sutko, J. L. (1991) Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms.Biophys. J. 59, 1153–63.

    PubMed  Google Scholar 

  • Olivetti, G., Anversa, P. &Loud, A. V. (1980) Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat: II. Tissue composition, capilliary growth and sarcoplasmic reticulum.Circul. Res. 46, 503–12.

    Google Scholar 

  • Perez-Reyes, E., Kim, H. S., Lacerda, A. E., Horne, W., Wie, X., Rampe, D., Campbell, K. P., Brown, A. M. &Birnbaumer, L. (1989) Induction of calcium currents by the expression of the α1-subunit of the dihydropyridine receptor from skeletal muscle.Nature 340, 233–6.

    PubMed  Google Scholar 

  • Pizarro, G., Brum, G., Fill, M., Fitts, R., Rodriguez, M., Uribe, I. &Rios, E. (1988) The voltage sensor of skeletal muscle excitation-contraction coupling: a comparison with Ca2+ channels. In:The Ca Channel: structure, function and implications (edited byMorad, M., Nayler, W., Skazda, S. &Schramm, M.) pp. 138–157. Berlin: Springer-Verlag.

    Google Scholar 

  • Pizarro, G., Csernoch, L., Uribe, I., Rodriguez, M. &Rios, E. (1991) The relationship between Qγ and Ca release from the sarcoplasmic reticulum in skeletal muscle.J. Gen. Physiol. 97, 913–47.

    PubMed  Google Scholar 

  • Rios, E., Brum, G. &Stefani, E. (1986) E-C coupling effects of interventions that reduce slow Ca current suggest a role of t-tubule Ca channels in skeletal muscle function.Biophys. J. 49, 13a.

    Google Scholar 

  • Rios, E. &Brum, G. (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle.Nature 325, 717–20.

    PubMed  Google Scholar 

  • Rios, E. &Pizarro, G. (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle.Physiol. Rev. 71, 849–908.

    PubMed  Google Scholar 

  • Sanguinetti, M. C., Krafte, D. S. &Kass, R. S. (1986) Voltage-dependent modulation of Ca channel current in heart cells by Bay K8644.J. Gen. Physiol. 88, 369–92.

    PubMed  Google Scholar 

  • Schneider, M. F. &Chandler, W. K. (1973) Voltage-dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling.Nature 242, 244–6.

    PubMed  Google Scholar 

  • Schneider, T. &Hofmann, F. (1988) The bovine cardiac receptor for calcium channel blockers is a 195-kDa protein.Eur. J. Biochem. 174, 369–75.

    PubMed  Google Scholar 

  • Schwartz, L. M., Mccleskey, E. W. &Almers, W. (1985) Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels.Nature 314, 747–51.

    PubMed  Google Scholar 

  • Simon, B. &Hill, D. (1991) The activation time course of calcium release in frog skeletal muscle follows the fourth power of charge movement.Biophys. J. 59, 64a.

    Google Scholar 

  • Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T. &Numa, S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle.Nature 328, 313–8.

    PubMed  Google Scholar 

  • Tanabe, T., Beam, K. G., Powell, J. A. &Numa, S. (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA.Nature 336, 134–9.

    PubMed  Google Scholar 

  • Trautwein, W., Cavalié, A., Flockerzi, V., Hofmann, F. &Pelzer, D. (1987) Modulation of calcium channel function by phosphorylation in guinea pig ventricular cells and phospholipid bilayer membranes.Circul. Res. 61, I 17–1 23.

    Google Scholar 

  • Varadi, G., Lory, P., Schultz, D., Varadi, M. &Schwartz, A. (1991) Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel.Nature 352, 159–162.

    PubMed  Google Scholar 

  • Wibo, M., Bravo, G. &Godfraind, T. (1991) Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors.Circul. Res. 68, 662–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, G.D. DHP receptors and excitation-contraction coupling. J Muscle Res Cell Motil 13, 394–405 (1992). https://doi.org/10.1007/BF01738035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738035

Navigation