Skip to main content
Log in

Histochemical evidence of changes in fuel metabolism induced in red, white and intermediate muscle fibres of streptozotocin-treated rats

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The present study provides histochemical evidence supporting the operation of the ‘glucose—fatty acid cycle‘ in skeletal muscles taken 5 days after the administration of a single injection of streptozotocin. It also indicates that the cycle is more important in fast-oxidative-glycolytic (FOG) and slow-oxidative (SO) fibres than in fast-glycolytic (FG) fibres. Data from muscles taken 14 and 28 days after treatment suggest that lipid catabolism becomes progressively less important with time, and that muscles from longer-term diabetic rats rely on the aerobic and anaerobic breakdown of glucose by FOG and FG fibres to meet their cellular energy requirements. Although SO fibres appeared initially to be the least affected by steptozotocin-induced diabetes, the decline in their metabolic capabilities ultimately seemed to be greater than that in FOG fibres. Transformations in the biochemical characteristics of FOG and SO fibres occurred 14–28 days after streptozotocin treatment, in the absence of changes in actomyosin-ATPase activity. This supports the view that the division of skeletal muscle fibres into three or four distinct types on the basis of myosin- or actomyosin-ATPase activity is an oversimplification of the true situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANDERSEN, P. & HENRIKSSON, J. (1978) Training induced changes in the subgroups of human skeletal muscle fibres.Acta. physiol. scand. 99, 123–5.

    Google Scholar 

  • ARMSTRONG, R. B. & IANUZZO, C. D. (1977) Compensatory hypertrophy of skeletal muscle fibres in streptozotocin-diabetic rats.Cell. Tiss. Res. 181, 255–66.

    Google Scholar 

  • ARMSTRONG, R. B., GOLLNICK, P. D. & IANUZZO, C. D. (1975) Histochemical properties of skeletal muscle fibres in streptozotocin-diabetic rats.Cell. Tiss. Res. 162, 387–94.

    Google Scholar 

  • AWAD, E. A. & KOTTKE, F. J. (1970) Changes in muscle ultrastructure in diabetes mellitus.Archs Phys. Med. Rehab. 51, 683–7.

    Google Scholar 

  • BASS, A., BRDICZKA, D., EYER, P., HOFER, S. & PETTE, D. (1969) Metabolic differentiation of distinct muscle types at the level of enzymatic organisation.Eur. J. Biochem. 10, 198–206.

    Google Scholar 

  • BERGER, M., HAGG, S. A., GOODMAN, M. N. & RUDERMAN, N. B. (1976) Glucose metabolism in perfused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition.Biochem. J. 158, 191–202.

    Google Scholar 

  • BESTETTI, G., ZEMP, C., PROBST, D. & ROSSI, G. L. (1981) Neuropathy and myopathy in the diaphragm of rats after 12 months of streptozotocin-induced diabetes mellitus.Acta. neuropath. (Berl). 55, 11–20.

    Google Scholar 

  • BRODY, I. A. & ENGEL, W. K. (1964) Effects of phenazine methosulphate in histochemistry.J. Histochem. Cytochem. 12, 928–9.

    Google Scholar 

  • BROWN, G. G. (1978) Lipids. InAn Introduction to Histotechnology. pp. 321–35. New York: Appleton-Century-Crofts.

    Google Scholar 

  • CAMPEANU, L., CAMPEANU, S. & IONESCU, M. D. (1971) Ultrastructural alterations of the striated muscle cells in diabetes mellitus.Acta diabet. lat. 8, 680–710.

    Google Scholar 

  • CHAO, T. T., IANUZZO, C. D., ARMSTRONG, R. B., ALBRIGHT, J. T. & ANAPOLLE, S. E. (1976) Ultrastructural alterations in skeletal muscle fibres of streptozotocin-diabetic rats.Cell. Tiss. Res. 168, 239–46.

    Google Scholar 

  • CHEN, V. & IANUZZO, C. D. (1982) Metabolic alterations in skeletal muscle of chronically streptozotocin-diabetic rats.Archs Biochem. Biophys. 217, 131–8.

    Google Scholar 

  • CUENDET, G. S., LOTEN, E. G. & RENOLD, A. E. (1977) Evidence that the glucose-fatty acid cycle is operative in isolated skeletal (soleus) muscle.Diabetologia 11, 336.

    Google Scholar 

  • DENTON, R. M. & RANDLE, P. J. (1967) Concentrations of glycerides and phospholipids in rat heart and gastrocnemius muscles: effects of alloxan-diabetes and perfusion.Biochem. J. 104, 416–22.

    Google Scholar 

  • DUBOWITZ, V. & BROOKE, M. H. (1973)Muscle Biopsy: A Modern Approach, pp. 20–35. London: W. B. Saunders.

    Google Scholar 

  • EDGERTON, V. R. & SIMPSON, D. R. (1969) The intermediate muscle fibre of rats and guinea pigs.J. Histochem. Cytochem. 17, 828–38.

    Google Scholar 

  • FELBER, J. P., MAGNENAT, G., CASTHELAZ, M., GESER, C. A., MULLER-HESS, R., de KALBERMATTEN, N., EBINER, J. R., CURCHOD, B., PITTER, P. & JEQUIER, E. (1977) Carbohydrate and lipid oxidation in normal and diabetic subjects.Diabetes. 26, 693–9.

    Google Scholar 

  • GUY, P. S. & SNOW, D. H. (1977) The effect of training and detraining on muscle composition in the horse.J. Physiol. 269, 33–51.

    Google Scholar 

  • HAVEL, R. J. (1970) Lipid as an energy source. InThe Physiology and Biochemistry of Muscle as a Food, Vol. 2, (edited by BRISKEY, E. J., CASSENS, R. G. and MARSH, B. B.), pp. 609–21. Madison: University of Wisconsin Press.

    Google Scholar 

  • HOWALD, H. (1982) Training induced morphological and functional changes in skeletal muscle.Int. J. Sports. Med. 3, 1–12.

    Google Scholar 

  • JACOBSON, N. O. (1969) The histochemical localisation of lactic dehydrogenase isoenzymes in the rat nephron by means of an improved polyvinyl alcohol method.Histochemie. 20, 250–65.

    Google Scholar 

  • JANSSON, E., SJODIN, B., THORSTENSSON, A., HULTIN, B. & FRITH, K. (1978) Changes in muscle fibre type distribution in man after physical exercise. A sign of fibre type transformation?Acta. physiol. scand. 104, 235–7.

    Google Scholar 

  • LAWRENCE, G. M. & TRAYER, I. P. (1985) The localization of hexokinase isoenzymes in red and white skeletal muscles of the rat.Histochem. J. 17, 353–71.

    Google Scholar 

  • LAWRENCE, G. M., TRAYER, I. P. & WALKER, D. G. (1986) Longer-term effects of streptozotocin-diabetes on hexokinase activities in red, white and intermediate skeletal muscle fibres of the rat.Clin. Sci. In press.

  • LOWRY, O. H., LOWRY, C. V., CHI, M. M.-Y., HINTZ, C. S. & FELDER, S. (1980) Enzymological heterogeneity of human muscle fibres. InThe Plasticity of Muscle (edited by PETTE, D.), pp. 3–18. Berlin: Walter de Gruyter.

    Google Scholar 

  • MABUCHI, K. & SRÉTER, F. A. (1980) Actomyosin ATPase II. Fibre typing by histochemical ATPase reaction.Muscle & Nerve. 3, 233–9.

    Google Scholar 

  • MAIZELS, E. Z., RUDERMAN, N. B., GOODMAN, M. N. & LAU, D. (1977) Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat.Biochem. J. 162, 557–68.

    Google Scholar 

  • MCMILLAN, P. J. (1967) Differential demonstration of muscle and heart lactate dehydrogenase of rat muscle and kidney.J. Histochem. Cytochem. 15, 21–31.

    Google Scholar 

  • MURTHY, V. K. & SHIPP, J. C. (1977) Accumulation of myocardial triglycerides in ketotic diabetes. Evidence for increased biosynthesis.Diabetes 26, 222–9.

    Google Scholar 

  • NACHLAS, M. M., TSOU, K.-C., de SOUZA, E., CHENG, C.-S. & SELIGMAN, A. M. (1957) Cytochemical demonstration of succinate dehydrogenase by the use of a newp-nitrophenyl substituted ditetrazole.J. Histochem. Cytochem. 5, 420–36.

    Google Scholar 

  • NEMETH, P., HOFER, H. W. & PETTE, D. (1979) Metabolic heterogeneity of muscle fibres classified by myosin ATPase.Histochemistry 63, 191–201.

    Google Scholar 

  • PEARSE, A. G. E. (1972) Carboxylic ester hydrolases. InHistochemistry: Theoretical and Applied, Vol. II, pp. 761–807, London: Churchill Livingstone.

    Google Scholar 

  • PETER, J. B., BARNARD, R. J., EDGERTON, V. R., GILLESPIE, G. A. & STEMPEL, K. E. (1972) Metabolic profiles of three fibre types of skeletal muscle in guinea pigs and rabbits.Biochemistry 11, 2627–33.

    Google Scholar 

  • PIEROBON-BORMIOLI, S., SARTORE, S., LIBERA, L. D., VITADELLO, M. & SCHIAFFINO, S. (1981) ‘Fast’ Isomyosins and fibre types in mammalian skeletal muscle.J. Histochem. Cytochem. 29, 1179–88.

    Google Scholar 

  • RANDLE, P. J. (1966) Carbohydrate metabolism and lipid storage and breakdown in diabetes.Diabetologia 2, 237–47.

    Google Scholar 

  • RANDLE, P. J., NEWSHOLME, E. A. & GARLAND, P. B. (1964) Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate and of alloxan-diabetes and starvation on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles.Biochem. J. 93, 652–65.

    Google Scholar 

  • REICHMANN, H. & PETTE, D. (1982) A comparative microphotometric study of succinate dehdyrogenase activity levels in type I, IIA and IIB fibres of mammalian and human muscles.Histochemistry 74, 27–41.

    Google Scholar 

  • RENNIE, M. J., WINDER, W. W. & HOLLOSZY, J. O. (1976) A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat.Biochem. J. 156, 647–55.

    Google Scholar 

  • RUDERMAN, N. B., GOODMAN, M. N., CONOVER, C. A. & BERGER, M. (1979) Substrate utilisation in perfused skeletal muscle.Diabetes 28, suppl. 1, 13–7.

    Google Scholar 

  • RUDERMAN, N. B., KEMMER, F. W., GOODMAN, N. M. & BERGER, M. (1980) Oxygen consumption in perfused muscle: effect of perfusion with aged, fresh and age-rejuvenated erythrocytes on oxygen consumption, tissue metabolites and inhibition of glucose utilisation by acetoacetate.Biochem. J. 190, 57–64.

    Google Scholar 

  • SALTIN, B., HENRICKSSON, J., NYGAARD, E., ANDERSEN, P. & JANSSON, E. (1977) Fibre types and metabolic potential of skeletal muscles in sedentary man and endurance runners.Ann. N.Y. Acad. Sci. 301, 3–29.

    Google Scholar 

  • SJÖGREN, S. (1984) Lactate dehydrogenase in developing rat oral epithelium.J. Histochem. Cytochem. 32, 1–6.

    Google Scholar 

  • SPURWAY, N. C. (1981) Objective characterisation of cells in terms of microscopic parameters: an example from muscle histochemistry.Histochem. J. 13, 269–317.

    Google Scholar 

  • STEARNS, S. B., TEPPERMAN, H. M. & TEPPERMAN, J. (1979) Studies on the utilization and mobilisation of lipid in skeletal muscles from streptozotocin-diabetic and control rats.J. Lipid Res. 20, 654–62.

    Google Scholar 

  • TAKEUCHI, T. & KURIAKI, H. (1955) Histochemical detection of phosphorylase in animal tissues.J. Histochem. Cytochem. 3, 153–60.

    Google Scholar 

  • THOMPSON, M. P. & WILLIAMSON, D. H. (1975) Metabolic interactions of glucose acetate and adrenaline in rat submaxillary glandin vitro.Biochem. J. 146, 635–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, G.M., Walker, D.G. & Trayer, I.P. Histochemical evidence of changes in fuel metabolism induced in red, white and intermediate muscle fibres of streptozotocin-treated rats. Histochem J 18, 203–212 (1986). https://doi.org/10.1007/BF01676122

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01676122

Keywords

Navigation