Skip to main content
Log in

Toward a cure for osteoporosis: Reversal of excessive bone fragility

  • Review Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

While estrogen replacement therapy and calcium supplementation appear to be effective at preventing postmenopausal osteoporosis, therapy for established osteoporosis is far less effective. The reduction of bone fragility should be a goal of a treatment for established osteoporosis. To this end, increases in cortical bone mass by subperiosteal new bone formation may produce the greatest mechanical advantage. Antiresorptive drugs, such as etidronate, have shown potential for reducing the incidence of osteoporotic fracture in the short term, but their ability to produce a long-term benefit may be limited. An alternative approach might be to develop drug therapies that substantially increase cortical bone strength, namely by stimulating periosteal bone formation. Although sodium fluoride has proved to be problematic, there are several other potential osteoporosis therapies. They include treatment with anabolic hormones (e.g. growth hormone and anabolic steroids) and targeted delivery of growth factors. Also, antiresorptive and formation-stimulating drugs might be combined in a new form of ADFR (coherence) therapy where the new acronym means: Activate-Depress-Formation stimulation-Repeat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hayes WC, Myers ER, Maitland LA, Resnick NM, Lipsitz LA, Greenspan SL. Relative risk of fall severity, body habitus and bone density in hip fracture among the elderly. Trans Orthop Res Soc 1991; 16:139.

    Google Scholar 

  2. Hulley SB, Vogel JM, Donaldson CL, Bayers JH, Friedman RJ, Rosen SN. The effect of supplemental oral phosphate on the bone mineral changes during prolonged bed rest. J Clin Invest 1971; 50:2506–18.

    Google Scholar 

  3. Donaldson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE. Effect of prolonged bed rest on bone mineral. Metabolism 1970; 19:1071–84.

    Google Scholar 

  4. Heaney RP. Bone mass and osteoporotic fractures (editorial). Calcif Tiss Int 1990; 47:63–5.

    Google Scholar 

  5. Atkinson PJ. Changes in resorption spaces in femoral cortical bone with age. J Path Bacteriol 1965; 89:173–8.

    Google Scholar 

  6. Vogel HG. Influence of maturation and aging on mechanical and biochemical parameters of rat bone. Gerontology 1979; 25:16–23.

    Google Scholar 

  7. Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg [Am] 1976; 58:82–6.

    Google Scholar 

  8. Yamada H. Strength of biological materials. Robert E. Krieger Publishing Co., Huntington, 1973.

    Google Scholar 

  9. Alexander R McN. Factors of safety in the structure of mammals. Sci Prog 1981; 67:109–30.

    Google Scholar 

  10. Biewener AA, Scaling body support in mammals: limb posture and muscle mechanics. Science 1989; 245:45–8.

    Google Scholar 

  11. Rubin CT, Lanyon LE. Dynamic strain similarity in vertbrates: an alternative to allometric limb bone scaling. J Theor Biol 1984; 107:321–7.

    Google Scholar 

  12. Parfitt AM. Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 1984; 36:S123-S128.

    Google Scholar 

  13. Vesterby A, Gundersen HJG, Melsen F. Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation. Bone 1989; 10:7–13.

    Google Scholar 

  14. Riggs BL, Melton III LJ. Involutional osteoporosis. N Engl J Med 1986; 314:1676–86.

    Google Scholar 

  15. Lindsay R. Alternative strategies for prevention of postmenopausal osteoporosis. Pub Health Rep [Suppl: Osteoporosis] 1987; 66–70.

  16. Austin LA, Heath HH III. Calcitonin: physiology and pathophysiology. N Engl J Med 1981; 304:269–78.

    Google Scholar 

  17. Chambers TJ. The pathobiology of the osteoclast. J Clin Pathol 1985; 38:241–52.

    Google Scholar 

  18. Jowsey J, Raisz LG. Experimental osteoporosis and parathyroid activity. Endocrinology 1968; 82:384–96.

    Google Scholar 

  19. Heaney RP. A unified concept of osteoporosis (editorial). Am J Med 1965; 39:877–80.

    Google Scholar 

  20. Boonekamp PM, van der Wee-Pals LJ, van Wijk-van Lennep MM, Thesing CW, Bijvoet OL. Two modes of action of the bisphosphonates on osteoclastic resorption of mineralized matrix. Bone Miner 1986; 1:27–39.

    Google Scholar 

  21. Wronski TJ, Cintron M, Dann LM. Temporal relationships between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int 1988; 43:179–83.

    Google Scholar 

  22. Wronski TJ, Dann LM, Scott KS, Crooke LR. Endocrine and pharmacological suppressors of bone turnover protect against osteopenia in ovariectomized rats. Endocrinology 1989; 125:810–16.

    Google Scholar 

  23. Komm BS, Terpening CM, Benz DJ, Graeme KA, Gallegos A, Korc M, Greene GL, O'Malley BW, Haussler MR. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science 1988; 241:81.

    Google Scholar 

  24. Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 1988, 241:84.

    Google Scholar 

  25. Oursler MJ, Pyfferoen J, Osdoby P, Riggs BL, Spelsberg TC. Osteoclasts express mRNA for estrogen receptor. J Bone Min Res 1990; 5:S203

    Google Scholar 

  26. Gruber HE, Ivey JL, Baylink DJ, Matthews M, Nelp WB, Sisom K, Chesnut CH. Long-term calcitonin therapy in postmenopausal osteoporosis. Metabolism 1984; 33:295–303.

    Google Scholar 

  27. Storm T, Thamsborg G, Steiniche T et al. Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med 1990; 322:1265–71.

    Google Scholar 

  28. Watts NB, Harris ST, Genant HK et al. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med 1990; 323:73–9.

    Google Scholar 

  29. Hardt AB. Bisphosphonate effects on alveolar bone during rat molar drifting. J Dent Res 1988; 67:1430–3.

    Google Scholar 

  30. Kiratli BJ, Agre JC, Smith EL. Effects of chronic immobilization (paralysis) on vertebral and femoral bone mineral density. J Bone Min Res 1989; 4:S173.

    Google Scholar 

  31. Rice JC, Cowin SC, Bowman JA. On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 1988; 21:155–68.

    Google Scholar 

  32. Roser SE, Keller TS, Weisberger AM, Spengler DM. Compressive mechanical properties and the distribution of density and porosity in the human femur. Trans Orthop Res Soc 1991; 16:484.

    Google Scholar 

  33. Rubin CT, Lanyon LE. Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J Exp Biol 1982; 101:187–211.

    Google Scholar 

  34. Lotz JC, Hayes WC, Gerhart TN. The structural contribution of cortical and trabecular bone in the femoral neck. Trans Orthop Res Soc 1988; 13:232.

    Google Scholar 

  35. Yang KH, Sofranko R, Burr DB. Stress redistribution of osteoporotic spine. In: Spilker RL, Simon Br, eds. Computational methods in bioengineering. New York: ASME, 1988: 427–36.

    Google Scholar 

  36. Rockoff SD, Sweet E, Bleustien J. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 1969; 3:163–75.

    Google Scholar 

  37. Mazess RB. Fracture risk: a role for compact bone (letter). Calcif Tissue Int 1990; 47:191–3.

    Google Scholar 

  38. Kleerekoper M, Peterson E, Phillips E et al. Continuous sodium fluoride therapy does not reduce vertebral fracture rate in postmenopausal osteoporosis. J Bone Min Res 1989; 4:S376.

    Google Scholar 

  39. Riggs BL, Hodgson SF, O'Fallon WM et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 1990; 322:802–9.

    Google Scholar 

  40. Weatherell JA, Weidmann SM. The skeletal changes of chronic experimental fluorosis. J Pathol Bacteriol 1959; 78:233–41.

    Google Scholar 

  41. O'Duffy JD, Wahner HW, O'Fallon WM et al. Mechanism of acute lower extremity pain syndrome in fluoride-treatment osteoporotic patients. Am J Med 1986; 80:561.

    Google Scholar 

  42. Heaney RP, Baylink DJ, Johnston CC Jr, et al. Fluoride therapy for vertebral crush fracture syndrome: status report. Ann Intern Med 1989; 111:678–80.

    Google Scholar 

  43. Ekstrand J, Spak C-J. Fluoride pharmokinetics: its implications in the fluoride treatment of osteoporosis. J Bone Min Res 1990; 5:S53-S61.

    Google Scholar 

  44. Pak CYC, Sakhaee K, Zerwekh JE et al. Safe and effective treatment of osteoporosis with intermittent slow release sodium fluoride: augmentation of vertebral bone mass and inhibition of fractures. J Clin Endocrin Metab 1989; 68:150–9.

    Google Scholar 

  45. Harris WH, Heaney RP. Effect of growth hormone on skeletal mass in adult dogs. Nature 1969; 223:403–4.

    Google Scholar 

  46. Harris WH, Heaney RP, Jowsey J, Cockin J, Akins C, Graham J, Weinberg EH, Growth hormone: the effect on skeletal renewal in the adult dog. I. Morphometric studies. Calcif Tissue Res 1972; 10:1–13.

    Google Scholar 

  47. Heaney RP, Harris WH, Cockin J, Weinberg EH. Growth hormone: the effect on skeletal renewal in the adult dog. II. Mineral kinetic studies. Calc Tiss Res 1972; 10:14–22.

    Google Scholar 

  48. Aloia JF, Zanzi T, Ellis K, Jowsey J, Roginsky M, Wallach S, Cohn SH. Effects of growth hormone in osteoporosis. J Clin Endocrinol Metab 1976; 43:992–9.

    Google Scholar 

  49. Kruse HP, Kuhlencordt F. On an attempt to treat primary and secondary osteoporosis with human growth hormone. Horm Metab Res 1975; 7:488–91.

    Google Scholar 

  50. Haas HG, Damgacher MA, Goschke H, Guncaga J, Lauffenburger T, Lentner C, Olah AJ, Wacker HR. Growth hormone in osteoporosis. Calcif Tissue Res 1976; 21:467–8.

    Google Scholar 

  51. Rudman D, Kutner MH, Rogers CM, Lubin MF, Fleming GA, Bain RP. Impaired growth hormone secretion in the adult population. J Clin Invest 1981; 67:1361–9.

    Google Scholar 

  52. Bennett AE, Wahner HW, Riggs BL, Hintz RL. Insulin-like growth factors I and II: aging and bone density in women. J Clin Endocrinol Metab 1984; 59:701–4.

    Google Scholar 

  53. Rudman D, Feller AG, Nagraj HS et al. Effects of human growth hormone in men over 60 years old. N Engl J Med 1990; 323:1–6.

    Google Scholar 

  54. Franchimont P, Urbain-Choffray D, Lambelin P, Fontaine M, Fragin G, Reginster J. Effects of repetitive administration of growth hormone-releasing hormone on growth hormone secretion, insulin-like growth factor I, and bone metabolism in postmenopausal women. Acta Endocrinol 1989; 120:121–8.

    Google Scholar 

  55. Syftestad GT, Urist MR. Bone aging. Clin Orthop Rel Res 1982; 162:288–97.

    Google Scholar 

  56. Reddi AH. Age-dependent decline in extracellular matrix-induced local bone differentiation. Isr J Med Sci 1985; 21:312–23.

    Google Scholar 

  57. Syftestad GT, Urist MR. Growth hormone dependent matrix-induced heterotopic bone formation. Proc Soc Exp Biol Med 1980; 163:411–15.

    Google Scholar 

  58. Albright F, Smith PH, Richardson AM. Postmenopausal osteoporosis: its clinical features. JAMA 1941; 116:2465–73.

    Google Scholar 

  59. Lindsay R, Hart DM, Forrest C, Baird C. Prevention of spinal osteoporosis in oophorectomised women. Lancet 1980; 2:1151–4.

    Google Scholar 

  60. Genant HK, Cann CE, Ettinger M, Gordan GS. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 1982; 97:699–705.

    Google Scholar 

  61. Barengolts EI, Rosol TJ, BotsisJ, Kukreja SC. Comparison of the effects of progesterone, estrogen, and medroxyprogesterone on established bone loss in ovariectomized aged rats. J Bone Miner Res 1990; 5:S246.

  62. Faguer de Moustier B, Conard J, Guyene TT, Sitt Y, Denys I, Arnoux-Rouveyre M, Pelisser C. Comparative metabolic study of percutaneous versus oral micronized 17 β-oestradiol in replacement therapy. Maturitas 1989; 11:275–86.

    Google Scholar 

  63. Jasonni VM, Bulletti C, Naldi S, Ciotti P, DiCosmo D, Lazzaretto R, Flamigni C. Biological and endocrine aspects of transdermal 17β-oestradiol administration in post-menopausal women. Maturitas 1988; 10:263–70.

    Google Scholar 

  64. Studd J, Savvas M, Waston N, Garnett T, Fogelman I, Cooper D. The relationship between plasma estradiol and the increase in bone density in postmenopausal women after subcutaneous hormone implants. Am J Obstet Gynecol 1990; 163:1474–9.

    Google Scholar 

  65. Drinkwater BL, Nilson K, Ott S, Chesnut CH III. Bone mineral density after resumption of menses in amenorrheic women. JAMA 1986; 256:380–2.

    Google Scholar 

  66. Goulding A, Gold E. Buserelin-mediated osteoporosis: effects of restoring estrogen on bone resorption and whole body calcium content in the rat. Calcif Tissue Int 1990; 46:14–19.

    Google Scholar 

  67. Prior JC, Progesterone as a bone-tropic hormone. Endocr Rev 1990; 11:386–98.

    Google Scholar 

  68. Chesnut III CH, Ivey JL, Gruber HE et al. Stanozolol in postmenopausal osteoporosis: therapeutic efficacy and possible mechanisms of action. Metabolism 1983; 32:571–80.

    Google Scholar 

  69. Chesnut III CH, Nelp WB, Baylink DJ et al. Effect of methandrostenolone on postmenopausal bone wasting as assessed by changes in total bone mineral mass. Metabolism 1977; 26:267–7.

    Google Scholar 

  70. Aloia JF, Kapoor A, Vaswani A et al. Changes in body composition following therapy of osteoporosis with methandrostenolone. Metabolism 1981; 30:1076–9.

    Google Scholar 

  71. Dequeker J, Geusens P. Anabolic steroids and osteoporosis. Acta Endocrinol 1985; Suppl 271: 45–52.

    Google Scholar 

  72. Need AG, Horowitz M, Walker CJ et al. Cross-over study of fat-corrected forearm mineral content during nandrolone decanoate therapy for osteoporosis. Bone 1989; 10:3–6.

    Google Scholar 

  73. Johansen JS, Hasager C, Podenphant J et al. Treatment of postmenopausal osteoporosis: is the anabolic steroid nandrolone decanoate a candidate? Bone Miner 1989; 6: 77–86.

    Google Scholar 

  74. Dhem A, Ars-Piret N, Waterschoot MP. The effects of nandrolone decanoate on rarefying bone tissue. Curr Med Res Opin 1980; 6:606–13.

    Google Scholar 

  75. Genneri C, Agnusdei D, Gonnelli S. Effecti ossei della terapia con nandrolone decanoato nella osteoporosi postmenopausale. Minerva Endocrinol 1989; 14:69–74.

    Google Scholar 

  76. Klein DC, Raisz LG. Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 1970; 86:1436.

    Google Scholar 

  77. Raisz LG, Sandberg AL, Goodson JM, Simmons HA, Mergenhagen SE. Complement-dependent stimulation of prostaglandin synthesis and bone resorption. Science 1974; 185:789.

    Google Scholar 

  78. Chyun YS, Raisz LG. Stimulation of bone formation by prostaglandins E2. Prostaglandins 1984; 27:97–103.

    Google Scholar 

  79. Li XJ, Jee WSS, Li YL, Patterson-Buckendahl P. Transient effects of subcutaneously administered prostaglandin E2 on cancellous and cortical bone in young adult dogs. Bone 1990; 11:353–64.

    Google Scholar 

  80. Mori S, Jee WSS, Li XJ, Chan S, Kimmel DB. Effects of PGE2 on production of new cancellous bone in the axial skeleton of ovariectomized rats. Bone 1990; 11:103–13.

    Google Scholar 

  81. Jee WSS, Mori S, Li XJ, Chan S. PGE2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone 1990; 11:253–66.

    Google Scholar 

  82. Jorgensen HRI, Svanholm H, Host A. Bone formation induced in an infant by systemic prostaglandin-E2 administration. Acta Orthop Scand 1988; 59:464–6.

    Google Scholar 

  83. Mackie EJ, Trechsel U. Stimulation of bone formation in vivo by transforming growth factor-β: remodeling of woven bone and lack of inhibition by indomethacin. Bone 1990; 11:295–300.

    Google Scholar 

  84. Marcelli C, Yates AJ, Mundy GR. In vivo effects of human recombinant transforming growth factor β on bone turnover in normal mice. J Bone Miner Res 1990; 5:1087–96.

    Google Scholar 

  85. Noda M, Camilliere JJ. In vivo stimulation of bone formation by transforming growth factor-β. Endocrinology 1989; 124:2991–4.

    Google Scholar 

  86. Freeman AI, Mayhew E, Targeted drug delivery. Cancer 1986; 58:573–83.

    Google Scholar 

  87. Ostro MJ, Cullis PR. Use of liposomes as injectable-drug delivery systems. Am J Hosp Pharm 1989; 46:1576–87.

    Google Scholar 

  88. Termine JD. Non-collagen proteins in bone. Ciba Found Symp 1988; 136:178–202.

    Google Scholar 

  89. Nagasaki K, Yamaguchi K, Miyake Y et al. In vitro and in vivo antagonists against parathyroid hromone-related protein. Biochem Biophys Res Comm 1989; 158:1036–42.

    Google Scholar 

  90. Langer R. New methods of drug delivery. Science 1990; 249:1527–33.

    Google Scholar 

  91. Klenner T, Wingen F, Keppler BK et al. Anticancer-agent-linked phosphonates with antiosteolytic and antineoplastic properties: a promising perspective in the treatment of bone-related maglignacies? J Cancer Res Clin Oncol 1990; 116:341–50.

    Google Scholar 

  92. Frost HM. Treatment of osteoporoses by manipulation of coherent bone cell populations. Clin Orthop Rel Res 1979; 143:227–44.

    Google Scholar 

  93. Frost HM. The ADFR concept revisited. Calcif Tissue Int 1984; 36:349–53.

    Google Scholar 

  94. Anderson C, Cape RDT, Crilly RG et al. Preliminary observations of a form of coherence therapy for osteoporosis. Calcif Tissue Int 1984; 36:341–3.

    Google Scholar 

  95. Pacifici R, McMurtry C, Vered I et al. Coherence therapy does not prevent axial bone loss in osteoporotic women: a preliminary comparative study. J Clin Endocrinol Metab 1988; 66:747–53.

    Google Scholar 

  96. Hesch RD, Heck J, Delling G et al. Results of a stimulatory therapy of low bone metabolism in osteoporosis with (l–38) hPTH and diphosphonate EHDP: protocol of study I, osteoporosis trial Hannover. Klin Wochenschr 1988; 66:976–84.

    Google Scholar 

  97. Kuranobu K. Effects of activate-depress-free-repeat (ADFR) treatment on bone mass in old beagles with osteoporosis. Nippon Seikeigeka Gakkai Zasshi 1990; 64:430–1.

    Google Scholar 

  98. Aloia JF, Vaswani A, Meunier PJ, Edouard CM, Monique EA, Yeh JK, Cohn SH. Coherence treatment of postmenopausal osteoporosis with growth hormone and calcitonin. Calcif Tissue Int 1987; 40:253–9.

    Google Scholar 

  99. Mundy GR, Bonewald LF. Role of TGFβ in bone remodeling. Ann NY Acad Sci 1990; 593:91–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, C.H. Toward a cure for osteoporosis: Reversal of excessive bone fragility. Osteoporosis Int 2, 12–19 (1991). https://doi.org/10.1007/BF01627073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01627073

Keywords

Navigation