Skip to main content
Log in

Aphidicolin hypersensitive mutant of chinese hamster V79 fibroblasts that underproduces DNA polymerase-α antigen

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Aphidicolin is a specific inhibitor of DNA polymerase-α and -δ from eukaryotic cells. Because of the specificity of this inhibitor, it is potentially a useful probe for the detailed studies of the function of these polymerases. DNA polymerase-α mutants isolated on the basis of resistance to aphidicolin have been described. We have isolated four variants that exhibit hypersensitivities to aphidicolin (Aphhs) from Chinese hamster V79/743X fibroblasts. These variants are designated aphhs-1, aphhs-2, aphhs-3 and aphhs-4. We reported here results of studies involving immunochemical characterization. The Aphhs phenotype in all mutants was stable for at least 30 days in the absence of selection pressure. The dCTP pools in the 743X and Aphhs cell lines were not significantly different. The level of total DNA polymerase activity in the crude extract from aphhs-2 cells was 30% of that observed in the parental 743X clone. We developed a method to quantitate DNA polymerase-α antigen at single cells in situ using monoclonal antibody SJK 132-20 and fluorescence pseudocolor image. We found that the antigen of DNA polymerase-α in aphhs-2 was 30–50% of that in the parental 743X cells. The underproduction of the antigen of DNA polymerase-α provides a basis for the observed Aphhs phenotype. Possible mechanisms for the underproduction of DNA polymerase-α in aphhs-2 clone are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Chang, C.C., and Trosko, J.E. (1989). InDrug Resistance in Mammalian Cells, (ed.) Gupta, R.S. (CRC Press, Boca Raton, Florida)1:29–43.

    Google Scholar 

  2. Liu, P.K., and Norwood, T.H. (1988). In:DNA Replication and Mutagenesis, (eds.) Moses, R.E. and Summers, W.C. (American Society of Microbiology, Washington, D.C.), pp. 162–177.

    Google Scholar 

  3. Spradling, A., and Orr-Weaver, T. (1987).Annu. Rev. Genet. 21:373–403.

    PubMed  Google Scholar 

  4. Fry, M., and Loeb, L.A. (1986).Animal Cell DNA Polymerases, (CRC Press, Boca Raton, Florida).

    Google Scholar 

  5. Kornberg, A. (1982).DNA Replication, A Supplement, (W.H. Freeman and Co., San Francisco).

    Google Scholar 

  6. Wang, T.S.-F., Pearson, B.E., Suomalainen, H.A., Mohandas, T., Shapiro, L.J., Schroder, J., and Korn, D. (1985).Proc. Natl. Acad. Sci. U.S.A. 82:5270–5274.

    PubMed  Google Scholar 

  7. Miller, M.R., Seighman, C., and Ulrich, R.G. (1985).Biochemistry 24:7440–7445.

    PubMed  Google Scholar 

  8. Chang, C.C., Boezi, J.A., Warren, S.T., Sabourin, C.L.K., Liu, P.K., Glatzer, L., and Trosko, J.E. (1981).Somat. Cell Genet. 7:235–253.

    PubMed  Google Scholar 

  9. Liu, P.K., Chang, C.C., Trosko, J.E., Dube, D.K., Martin, G.M., and Loeb, L.A. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:797–801.

    PubMed  Google Scholar 

  10. Liu, P.K., and Loeb, L.A. (1984).Science 226:833–835.

    PubMed  Google Scholar 

  11. Holmes, A.M. (1981).Nucleic Acids Res. 9:161–168.

    PubMed  Google Scholar 

  12. Nishimura, M., Yasuda, H., Ikegami, S., Ohashi, M., and Yamada, M.A. (1979).Biochem. Biophys. Res. Commun. 91:939–945.

    PubMed  Google Scholar 

  13. Sugino, A., and Nakayama, K. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:7049–7053.

    PubMed  Google Scholar 

  14. Murakami, Y., Yasuda, H., Miyazawa, H., Hanaoka, F., and Yamada, M.A. (1985).Proc. Natl. Acad. Sci. U.S.A. 82:1761–1765.

    PubMed  Google Scholar 

  15. Murakami, Y., Eki, T., Miyazawa, T., Enomoto, T., Hanaoka, F., and Yamada, M.-A. (1986).Exp. Cell Res. 163:135–142.

    PubMed  Google Scholar 

  16. Byrnes, J.J., Downey, K.M., Black, V.L., and So, A.G. (1976).Biochemistry 15:2817–2823.

    PubMed  Google Scholar 

  17. Goscin, L.P., and Byrnes, J.J. (1982).Biochemistry 21:2513–2518.

    PubMed  Google Scholar 

  18. So, A.G., and Downey, K.M. (1988).Biochemistry 37:4591–4595.

    Google Scholar 

  19. Kunkel, T.A., Sabatino, R.D., and Bambara, R.A. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:4865–4869.

    PubMed  Google Scholar 

  20. Jaskulski, D., DeRiel, K., Mercer, W.E., Calabretta, B., and Baserga, R. (1988).Science 240:1544–1546.

    PubMed  Google Scholar 

  21. Bravo, R., Frank, R., Blundell, P.A., and Macdonald-Bravo, H. (1987).Nature 326:515–517.

    PubMed  Google Scholar 

  22. Lee, M.Y.W.T. (1988). InDNA Replication and Mutagenesis, (ed.) Moses, R. (American Society of Microbiology, Washington, D.C.), pp. 68–80.

    Google Scholar 

  23. Prelich, G., Kostura, M., Muashak, D.R., Matthews, M.B., and Stillman, B. (1987).Nature 326:471–476.

    PubMed  Google Scholar 

  24. Tan, C.K., Castillo, C., So, A.G., and Downey, K.M. (1986).J. Biol. Chem. 261:12310–12316.

    PubMed  Google Scholar 

  25. Johnston, L.H., White, J.H.M., Johnson, A.L., Lucchini, G., and Plevani, P. (1987).Nucleic Acids Res. 15:5017–5030.

    PubMed  Google Scholar 

  26. Wahl, A.F., Geis, A.M., Spain, B.H., Wong, S.W., Korn, D., and Wang, T.S.-F. (1988).Mol. Cell Biol. 8:5016–5025.

    PubMed  Google Scholar 

  27. Lee, M.Y.W.T., Toomey, N.L., and Wright, G.E. (1985).Nucleic Acids Res. 13:8623–8630.

    PubMed  Google Scholar 

  28. Ford, D.K., and Yerganian, G. (1958).J. Natl. Cancer Inst. 21:393–423.

    PubMed  Google Scholar 

  29. Reyland, M.E., and Loeb, L.A. (1987).J. Biol. Chem. 262:10824–10830.

    PubMed  Google Scholar 

  30. Miller, M.A., Korn, D., and Wang, T.S.-F. (1988).Nucleic Acids Res. 16:7961–7973.

    PubMed  Google Scholar 

  31. Tanaka, S., Hu, S.-Z., Wang, T.S.-F., and Korn, D. (1982).J. Biol. Chem. 257:8386–8390.

    PubMed  Google Scholar 

  32. Mori, T., Wani, A.A., D'Ambrosio, S.M., Chang, C.-C., and Trosko, J.E. (1989).Photochem. Photobiol. 49:523–526.

    PubMed  Google Scholar 

  33. Ayusawa, D., Iwata, K., Kozu, T., Ikegami, S., and Seno, T. (1979).Biochem. Biophys. Res. Commun. 91:946–954.

    PubMed  Google Scholar 

  34. Sabourin, C.L.K., Bates, P.F., Glatzer, L., Chang, C.C., Trosko, J.E., and Boezi, J.A. (1981).Somat. Cell. Genet. 7:255–268.

    PubMed  Google Scholar 

  35. Bensch, K.G., Tanaka, S., Hu, S.-Z., Wang, T.S.-F., and Korn, D. (1982).J. Biol. Chem. 257:8391–8396.

    PubMed  Google Scholar 

  36. Mushika, M., Miwa, T., Suzuoki, Y., Hayashi, K., Masaki, S., and Kaneda, T. (1988).Cancer 61:1182–1186.

    PubMed  Google Scholar 

  37. Jiang, L.-W., and Schindler, M. (1988).J. Cell Biol. 106:13–19.

    PubMed  Google Scholar 

  38. Wade, M.H., Trosko, J.E., and Schindler, M. (1986).Science 232:525–528.

    PubMed  Google Scholar 

  39. Buckland, R.M. (1986).Nature 320:557.

    Google Scholar 

  40. Sokal, R.R. and Rohlf, F.J. (1969).Single Classification, Analysis of Variance: “Biometry,” (W.H. Freeman, San Francisco), pp. 206–252.

    Google Scholar 

  41. Shapiro, H.M. (1988). InPractical Flow Cytometry, Vol. 2, (Alan R. Liss, New York), p. 166.

    Google Scholar 

  42. Huberman, J.A. (1981).Cell 23:647–648.

    PubMed  Google Scholar 

  43. Nishida, C., Reinhard, P., and Linn, S. (1988).J. Biol. Chem. 263:501–510.

    PubMed  Google Scholar 

  44. Reddy, G.P.V., and Pardee, A.B. (1983).Nature 304:86–88.

    PubMed  Google Scholar 

  45. Arenaz, P., and Sirover, M.A. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:5822–5826.

    PubMed  Google Scholar 

  46. Wong, S.W., Wahl, A.F., Yuan, P.M., Arai, N., Pearson, B.E., Arai, K.I., Korn, D., Hunkapiller, M.W., and Wang, T.S.-F. (1988).EMBO J. 7:37–47.

    PubMed  Google Scholar 

  47. Newman, C.N. (1982).Mutat. Res. 96:99–108.

    PubMed  Google Scholar 

  48. Gibbs, J.S., Chiou, H.C., Hall, J.D., Mount, D.W., Retondo, M.J., Weller, S.K., and Coen, D.M. (1985).Proc. Natl. Acad. Sci. U.S.A. 82:7969–7973.

    PubMed  Google Scholar 

  49. Hall, J.D., Furman, P.A., St. Clair, M.H., and Knopf, C.W. (1985).Proc. Natl. Acad. Sci. U.S.A. 82:3889–3893.

    PubMed  Google Scholar 

  50. Gibbs, J.S., Chiou, H.C., Bastow, K.F., Cheng, Y.C., and Coen, D.M. (1988).Proc. Natl. Acad. Sci. U.S.A. 85:6672–6676.

    PubMed  Google Scholar 

  51. Liu, P.K., and Lee, M.W.Y.T. (1988). An aphidicolin hypersensitive mutant from V79 fibroblasts that produces cyclin-dependent DNA polymerase. The 2nd International Conference on Antimutagenesis and Anticarcinogenesis. Ohito, Japan. Dec. 4–9 (abstract), p. 90.

  52. Bauer, G.A., Heller, H.M., and Berger, P.M. (1988).J. Biol. Chem. 263:917–924.

    PubMed  Google Scholar 

  53. Budd, M.E., Sitney, K.C., and Campbell, J.L. (1989).J. Biol. Chem. 264:6557–6565.

    PubMed  Google Scholar 

  54. Sitney, K.C., Budd, M.E., and Campbell, J.L. (1989).Cell,56:599–605.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P.K., Goudreau, B. & Hsu, G.S. Aphidicolin hypersensitive mutant of chinese hamster V79 fibroblasts that underproduces DNA polymerase-α antigen. Somat Cell Mol Genet 15, 331–344 (1989). https://doi.org/10.1007/BF01534972

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534972

Keywords

Navigation